Next Page: 10000

          Teen Scientists Win $1.8 Million At Regeneron Science Talent Search 2019 With Innovative Ideas On Exoplanets, HIV And A Classic Math Problem      Cache   Translate Page      

Click to view a price quote on REGN.

          Cheops, más cerca de iniciar su búsqueda de planetas      Cache   Translate Page      
Tras completar unas pruebas, el Satélite para la Caracterización de Exoplanetas, Cheops, ha superado con éxito una revisión de gran importancia, en la que se ha determinado que está listo para volar. Cheops permanecerá unos meses en Madrid antes de su env&ia ...
          Teen Scientists Win $1.8 Million at Regeneron Science Talent Search 2019 with Innovative Ideas on Exoplanets, HIV and a Classic Math Problem      Cache   Translate Page      
Teen Scientists Win $1.8 Million at Regeneron Science Talent Search 2019 with Innovative Ideas on Exoplanets, HIV and a Classic Math Problem
          Teen Scientists Win $1.8 Million At Regeneron Science Talent Search 2019 With Innovative Ideas On Exoplanets, HIV And A Classic Math Problem      Cache   Translate Page      

Click to view a price quote on REGN.

          Охотник за экзопланетами «Хеопс» отправится в космос осенью      Cache   Translate Page      
Европейское космическое агентство (ESA) сообщило о том, что телескоп Cheops («Хеопс») успешно прошёл все испытания, что означает его готовность к запуску. Cheops, или CHaracterising ExOPlanets Satellite, — это относительно небольшой космический аппарат, главной задачей которого станет изучение планет за пределами Солнечной системы.
          SpaceX’s triumph, exoplanets and mysterious killer whales: This week in space and science      Cache   Translate Page      
KSL.com provides a roundup of some interesting news from the …
          Post Doc Res Assoc - Exoplanet Radial Velocity Measurement - University of Wyoming - Laramie, WY      Cache   Translate Page      
Experience in reduction and analysis of RV data. Duties will include development of a data processing pipeline, reduction and analysis of RV data, and...
From University of Wyoming - Mon, 21 Jan 2019 06:21:57 GMT - View all Laramie, WY jobs
          ETs poderiam povoar galáxia mais rápido do que se pensava, diz estudo      Cache   Translate Page      
Via Láctea, em foto tirada no ano de 2009 (Foto: NASA)

 

É fácil se perder olhando para o céu noturno. Principalmente porque ele é o símbolo mais explícito que temos da vastidão do universo. Para se ter uma ideia, em uma noite de céu aberto, podemos ver até 2,500 estrelas, o que corresponde a apenas um centésimo de milionésimo do total delas em nossa galáxia. Em relação a nós, quase todas estão a uma distância que corresponde a somente 1% do diâmetro da Via Láctea (pouco menos de mil-anos luz). 

Diante da imensidão e de nossa pequenitude, não é a toa que o físico Enrico Fermi, em 1950, foi o primeiro a se perguntar: “onde está todo mundo?”. Ele apresentou o que ficou conhecido como o Paradoxo de Fermi, que é a contradição entre a grandeza do universo e o fato do ser humano ainda não ter encontrado vida avançada em nenhum lugar além da terra. 

Já houve muita especulação para solucionar tal paradoxo. Mas um novo estudo liderado pelo astrônomo Jonathan Carroll-Nellenback, da Universidade de Rochester, e revisado pelo The Astrophysical Journal, refutou teorias anteriores de alguns estudiosos sobre o assunto. De acordo com a descoberta, seria possível povoar uma galáxia mais rapidamente do que se pensava. Isso se aconteceria através dos movimentos estelares, que serviriam como distribuidores de vida. 

Além disso, segundo a pesquisa, a nossa solidão não seria tão paradoxal assim: experimentos determinaram que há uma variabilidade natural. Isso significa que as galáxias às vezes podem ser dominadas, e outras vezes, não – o que acabaria de vez com as dúvidas a respeito do Paradoxo de Fermi.

Em busca de respostas

Os pesquisadores fizeram simulações com diferentes densidades de estrelas, civilizações em estado inicial, velocidades de naves e outras variáveis. Assim, determinaram que há um meio termo entre aquelas galáxias que são silenciosas, vazias ou que estão cheias de vida. 

NGC 595, nebulosa da Galáxia do Triângulo (Foto: NASA, ESA, and M. Durbin, J. Dalcanton, and B. F. Williams (University of Washington))

 

Para eles, é possível que a Via Láctea seja parcialmente – ou totalmente – povoada. Há até mesmo a possibilidade de alguns exploradores extraterrestres terem visitado a galáxia no passado; porém, eles já teriam sido dizimados e nós não teríamos registros deles. Nosso Sistema Solar também pode estar entre vários outros sistemas já visitados, mesmo que nos últimos milhões de anos não tenhamos recebido nenhuma visita comprovadamente registrada.

Foi considerada pelos estudiosos a velocidade de um hipotético povoado avançado via sondas de velocidade finita – isso para determinar se uma galáxia poderia se tornar cenário para explorações espaciais em escalas de tempo menores do que a própria idade dela. Os cientistas também incluiram o efeito de movimentos estelares sobre o comportamento a longo prazo do povoado. 

Refutando Carl Sagan e William Newman

Uma das teorias mais famosas a refutar o Paradoxo de Fermi foi a de Carl Sagan e William Newman, do ano de 1981. Eles escreveram um relatório defendendo que a humanidade precisaria de paciência: ninguém teria nos visitado, pois qualquer forma de vida estaria muito longe. E levaria muito tempo para que uma espécie inteligentemente suficiente evoluísse a ponto de construir naves espaciais.

Newman e Sagan estariam errados, de acordo com o novo estudo liderado por Jonathan Carroll-Nellenback, já que, ao contrário do que a dupla de cientistas pensou, não levaria tanto tempo para que civilizações com capacidade de realizar viagens espaciais atravessassem uma galáxia. Os movimentos estelares também são capazes de distribuir vida – e em escalas bem menos demoradas do que a idade de uma galáxia. Um exemplo de viagem estelar seria o da estrela central do nosso Sistema Solar. “O Sol já atravessou a Via Láctea 50 vezes”, contou Carroll-Nellenback. 

Galáxia espiral M100  (Foto: NASA)

 

Civilizações muito avançadas têm maior probabilidade de crescer devagar, segundo Newman e Sagan. Por isso, muitas sociedades provavelmente teriam desaparecido antes mesmo de atingir as estrelas. “Essa ideia confunde a expansão das espécies como um todo com a sustentabilidade de alguns povoados individuais”, discordou Jason Wright.

Leia Mais:
+ NASA transforma galáxias em música – e o resultado é bem estranho
+ Galáxia "fantasmagórica" pode ajudar a desvendar origem do universo

Discordando de Michael Hart 

Outros pesquisadores, por sua vez, teorizaram que espécies tecnologicamente evoluídas, quando se destacam, facilmente se autodestroem. Logo, alienígenas poderiam ter nos visitado no passado; ou, talvez, estariam nos evitando de propósito, desconfiados dos seres terrestres.

Em um relatório de sua pesquisa de 1975, o astrofísico da NASA Michael Hart ainda duvidou da existência de quaisquer alienígenas, o que explicaria a ausência de qualquer visita por parte deles. 

Hart calculou que levaria alguns milhões de anos para que uma única espécie com capacidade de viajar pelo espaço conseguisse povoar uma galáxia. Esse tempo poderia ser estimado em, no mínimo, 650.000 anos. Logo, a ausência das espécies que não foram descobertas (o que Hart chamava de “Fato A”) significaria apenas que elas não existem. 

Jason Wright e Carroll-Nellenback, dizem, por outro lado, que somente o fato de que ainda não recebemos visitantes interestelares não permite que concluamos a inexistência deles. Para eles, algumas civilizações se expandem e tornam-se interestelares; mas elas não duram para sempre. Além disso, nem todos os planetas são habitáveis e algumas estrelas não seriam a melhor escolha para um destino.

Povoações do futuro

Adam Frank, da Universidade de Rochester, que também contribuiu com o estudo de Carroll-Nellenback, fala ainda do “Efeito Aurora”, no qual os “colonizadores” chegam a habitar um planeta, mas não sobrevivem às suas condições. 

Frank defende que precisamos procurar cada vez mais por sinais de alienígenas. Eles poderiam se tornar mais visíveis nas próximas décadas, à medida que telescópios descobrem cada vez mais exoplanetas e começam a espiar as atmosferas deles. “Estamos entrando em uma era na qual haverá reais dados acerca da vida em outros planetas”, defendeu Frank. “Nesse momento em que vivemos, isso não poderia ser mais relevante”.

Curte o conteúdo da GALILEU? Tem mais de onde ele veio: baixe o app Globo Mais para ler reportagens exclusivas e ficar por dentro de todas as publicações da Editora Globo. Você também pode assinar a revista, a partir de R$ 4,90, e ter acesso às nossas edições.


          Comment on Explore-Explain by Johannes Seelig      Cache   Translate Page      
The topic of 'explore' is an incredibly powerful tool and creates a significant opportunity for discoveries to be made outside of the original intent of a specific survey (i.e. Zooniverse, or exoplanet research: https://youtu.be/gypAjPp6eps?t=3m25s). However, to what extent can these be reliable? Would there be a possible way to automatically eliminate 'perceived correlations' (https://xkcd.com/925/)? The best 'counter-measure' that I've seen in this respect hast been to introduction-courses given on Zooniverse to 'coach' the users on what elements to look for (while on the other hand this might preemptively eliminate some non-template discoveries). Yet, as bigger as the access to such explorational data becomes to the public, the more blurry the line between actual causations and perceived correlations can become.
          Seasonal Trivia      Cache   Translate Page      
One of the well-known questions in meteorology is “What is the cause of seasons?” Many related secondary questions occur. Are any facts about the motions of Planet Earth, its speed in orbit, its path through space, and the precise location it occupies at any given time, truly trivial? These questions connect with the cause of seasons. 

Before one proceeds very far with formal education, teachers introduce scientific lessons on astronomy and weather. With respect to the cause of seasons, weather and astronomy are integrally related. Simple concepts are discussed first, such as the basic facts of our solar system—our Earth as a sphere and its motions of rotation and revolution. These facts and motions are not perceptible to observers on Earth. But our lives depend primarily on perception of real motion—motions that actually occur. In astronomy students must become aware of the difference between real and apparent motion—not always an easy distinction. They must learn that most perceived motions of the Sun, Moon, and stars are not real. Rather, they are apparent, caused by the real motion of Earth’s rotation on its axis and the real revolution of Earth in orbit around the Sun.

How do educators deal with the challenge? They use examples of the distinction between real and apparent in real life: One of the best examples is a video of how occupants on a train interpret motion of passengers waiting on the platform to board. When people outside the train change positions, is their motion real? or is it apparent? If outside passengers actually move, their motion is real. If the platform passengers do not actually change positions when the train starts to move imperceptibly, their motion is only apparent. An added challenge arises if both train passengers and platform occupants actually move. 

Similar problems of distinguishing real from apparent motion occur in determining seasonal beginnings and endings of astronomical spring, summer, winter, and autumn. (Readers may review the precise relationship of “points, times, speeds, motions, and paths in space” related to Planet Earth as discussed in our previous 3/6/19 post.) Why is astronomical summer 94 days long while astronomical winter is only 89 days long? This curious fact relates to the speed of revolution of Earth in its orbit. Since our planet possesses an elliptical orbit, there is a position where the Earth travels slightly slower. This is called aphelion, the point of maximum distance. There is also perihelion, the point of minimum distance, when Earth travels faster by 3.34%. At aphelion, the point of maximum distance, Earth travels somewhat slower.

At aphelion the Sun’s gravity is slightly weaker so the Earth does not “fall” as quickly. Earth’s orbital speed is slightly diminished. When Earth approaches the Sun a little closer at perihelion, the planet “falls” more quickly. Its orbital speed increases slightly. The difference in speed in units of miles/sec is 18.21 mi/sec vs 18.82 mi/sec. Earth hurtles along in its orbit, on average, at 67,000 mph. These statistics fascinate most students of astronomy and weather trivia.

Our home planet is actually somewhat closer to the sun in winter, 91 million miles compared with 94.5 million miles. This seems counterintuitive. Perihelion occurs in early January and aphelion in early July. The effects of Earth’s 23.4º axis tilt are far more significant in terms of the onset of summer and winter environments. Likewise, astronomical summer’s 94 days compared with astronomical winter’s 89 days is essentially insignificant because few residents are counting the days.

When one first learns that we live on a spherical planet, that fact is difficult to discover from a personal physical point of view. We may be overcome with wonder. “How do we know?” some may inquire. Similar questions may be generated as they discover most motions of the Sun, Moon, and stars are not real, but apparent. Skilled teachers should use these occasions to teach young scholars modern methods of science discovery.

Most planets in our Solar System and the thousands of extrasolar planets discovered so far have axis tilts. Earth’s axis tilt makes life for 7.5 billion residents possible. As of March 1, 2019, 3999 confirmed exoplanets in 2987 planetary systems have been discovered in our Milky Way Galaxy. A Wikipedia entry states there are 200 billion stars in our galaxy of which 11 billion may possess habitable planets. This figure is incredibly optimistic. Of 3999 confirmed planets not one has come close to Earth conditions which support complex, wondrous life of millions of different species. There are hundreds of unique, fine-tuned, life-supporting parameters on Earth. Absence of any of these conditions would preclude the possibility of life. 

Intuitively, we believe in Intelligent Design. We believe the thousands of conditions on Planet Earth are indicators of Divine Design, even if some of the factual knowledge may seem trivial. Human intuition points to a deeper truth:

http://jasscience.blogspot.com/2010/06/intuition-and-induction.html

     

   



     











      

          ALMA photographs planet formation patterns around sun-like star      Cache   Translate Page      
Astronomers in Japan have identified the signatures of an exoplanet forming around a young, sun-like star.
          Teen Scientists Win $1.8 Million at Regeneron Science Talent Search 2019 with Innovative Ideas on Exoplanets, HIV and a Classic Math Problem      Cache   Translate Page      

Ana Humphrey won $250,000 for her mathematical model to determine the possible…

The post Teen Scientists Win $1.8 Million at Regeneron Science Talent Search 2019 with Innovative Ideas on Exoplanets, HIV and a Classic Math Problem appeared first on WCRCLEADERS.


          Post Doc Res Assoc - Exoplanet Radial Velocity Measurement - University of Wyoming - Laramie, WY      Cache   Translate Page      
Experience in reduction and analysis of RV data. Duties will include development of a data processing pipeline, reduction and analysis of RV data, and...
From University of Wyoming - Mon, 21 Jan 2019 06:21:57 GMT - View all Laramie, WY jobs
          There May Be 50 Billion Rogue Planets in Our Galaxy      Cache   Translate Page      
RoguePlanet

People used to argue about whether planets like the eight (or more) in our solar system were rare. Starting in the 1990s with the discovery of the first exoplanets, it became clear planets are common around other stars. Now, a new simulation suggests there could be as many as 50 billion rogue planets.

The post There May Be 50 Billion Rogue Planets in Our Galaxy appeared first on ExtremeTech.


          Tief unter der Erde verstecken sich Hinweise auf die Geschichte unseres gesamten Sonnensystems      Cache   Translate Page      

Mars und seine Monde

In einer neuen Studie im Fachmagazin  „Proceedings of the National Academy of Sciences“ hat ein Forscherteam diese Woche einen Rekord zurückgedrängt und wichtige Aspekte der Planetenbewegungen aus einer Zeit von vor rund 200 Millionen Jahren ermittelt.

Das Team wird vom Geologen und Paläontologen Paul Olsen vom Lamont-Doherty Earth Observatory der Columbia University geleitet, der seit den 1980er-Jahren intensiv dazu forscht.

Wissenschaftler sagen schon lange, dass periodische Schwankungen des Erdklimas durch zyklische Änderungen in der Verteilung des Sonnenlichts auf unserer Oberfläche angetrieben werden. Dies ist auf zyklische Änderungen bei der Drehung unseres Planeten um seine Achse, die Elliptizität seiner Umlaufbahn und seine Ausrichtung auf die überlappenden Zyklen der Sonne zurückzuführen. Die Änderungen werden durch subtile Wechselwirkungen der Schwerkraft mit anderen Planeten hervorgerufen, wenn die Körper um die Sonne und umeinander wirbeln wie kreisende Hula-Hoop-Reifen.

Planetenbewegungen berechnen  

Allerdings ändern sich Planetwege mit der Zeit. Das kann auch die Länge der Zyklen ändern. Dies hat es für Wissenschaftler zu einer Herausforderung gemacht, herauszufinden, was viele vergangene Klimaschwankungen verursacht hat. Mit anderen Worten: Es ist ein Chaos da draußen.

Bislang können Forscher die relativen Bewegungen der Planeten und ihre möglichen Auswirkungen auf unser Klima mit annehmbarer Zuverlässigkeit in einer Zeitspanne von etwa 60 Millionen Jahren berechnen — ein vergleichsweise kleines Zeitfenster im über 4,5 Milliarden Jahre langen Leben der Erde.

Olsen erklärt: „Mein Mitautor Jacques Laskar hat gezeigt, dass Berechnungen nur 60 Millionen Jahre vor oder zurückspringen können. Danach werden die Vorhersagen absolut unzuverlässig. Da die Erde etwa 4,6 Milliarden Jahre alt ist, können nur etwa 1,6 Prozent ihrer vergangenen oder zukünftigen Bahn vorhergesagt werden. Wir brauchten also eine zuverlässige Methode für die Zeit darüber hinaus.“

Veränderungen in den Bahnen von Jupiter bestimmen

Die Umlaufbahn und die Achsenorientierung der Erde ändern sich ständig, da sie durch die Anziehungskraft anderer Körper verformt werden. „Diese Änderungen wirken sich auf die Verteilung des Sonnenlichts auf unsere Oberfläche aus, was sich wiederum auf das Klima und die Art der abgelagerten Sedimente auswirkt. Das gibt uns die geologische Aufzeichnung des Verhaltens von Sonnensystemen, wenn wir die Sedimente untersuchen“, so der Forscher.

Durch den Vergleich von periodischen Änderungen in gebohrten Sedimenten aus Arizona und New Jersey identifizierten Olsen und seine Kollegen 2018 einen Zyklus im Erdorbit von 405.000 Jahren, der sich offenbar in den letzten 200 Millionen Jahren nicht verändert hat – eine Art Metronom, an dem alle anderen Zyklen gemessen werden können. Mit den gleichen Sedimenten haben sie nun einen Zyklus identifiziert, der 1,75 Millionen Jahre andauerte und nun alle 2,4 Millionen Jahre in Betrieb ist. Sie erlauben es ihnen, langfristige Veränderungen in den Bahnen von Jupiter und den inneren Planeten (Merkur, Venus und Mars) näherungsweise zu bestimmen. Merkur, Venus und Mars sind die Planeten, die am ehesten unsere eigene Umlaufbahn beeinflussen.

Mögliche Existenz vergangener Planeten

Für sein großes Ziel hat Olsens bereits einen Großteil seines Lebens damit verbracht, die Gesteine der Erde zu nutzen, um eine so genannte „Geological Orrery" zu schaffen – eine Aufzeichnung klimatischer Veränderungen auf der Erde, die in eine größere Karte der Bewegungen des Sonnensystems über Hunderte von Millionen von Jahren zurückgeführt werden kann. Er sagt, es würde nicht nur ein Fenster auf unser eigenes Klima öffnen, sondern auch auf die Entwicklung des Sonnensystems selbst, einschließlich der möglichen Existenz vergangener Planeten und deren möglichen Wechselwirkungen mit unsichtbarer dunkler Materie.

Die Felsen geben auch darüber Auskunft, wie sich zyklischen Veränderungen auf das Klima auswirken:Mit zwei großen Bohrkernexperimenten haben wir herausgefunden, dass Veränderungen im tropischen Klima von nass bis trocken während der Zeit der frühen Dinosaurier vor etwa 252 bis 199 Millionen Jahren durch Umlaufzyklen von etwa 20.000, 100.000 und 400.000 Jahren ausgelöst wurden.“

Ziel: Planetenbewegung bis in die Gegenwart erforschen

Olsens hat weitere Pläne, um sein Forschung zu vervollständigen: „Der nächste Schritt besteht darin, unsere beiden abgeschlossenen Entkernungsversuche mit Kernen aus hohen Breiten zu kombinieren. Während unsere Kerndaten einige Aspekte der Planetenbahnen wirklich gut abbilden können, erzählen sie uns nichts über andere. Dafür brauchen wir einen Kern aus einem uralten See oberhalb der Paläo-Arktis oder Antarktis. Solche Vorkommen existieren in China und Australien.“ Das Team möchte auch Ablagerungen mit einbeziehen, die den Rekord um etwa 20 Millionen Jahre bis in die Gegenwart verlängern. Das wäre ein voller Beweis für das Konzept des geologischen Orrery.

Lest auch: Forscher haben errechnet, dass wir den Klimawandel noch aufhalten könnten — wenn wir zu einem drastischen Schritt bereit wären

Die Forschung schaut aber nicht nur in die Vergangenheit, sondern hat auch Relevanz für die Gegenwart. Neben der Art und Weise, wie das Klima auf unseren Orbit abgestimmt ist, wird es auch durch die Menge an Kohlendioxid in der Luft beeinflusst. „Jetzt befinden wir uns in einer Zeit, in der der CO2-Gehalt so hoch ist wie vor 200 Millionen Jahren, der frühen Dinosaurierzeit. Dies gibt uns einen möglichen Weg, um zu sehen, wie alle Faktoren zusammenwirken. Es könnte auch für die Suche nach dem Leben auf dem Mars oder nach bewohnbaren Exoplaneten bedeutsam sein.“

DAS KÖNNTE EUCH AUCH INTERESSIEREN:

 Deutschen Forschern gelang es erstmals, die Geburt eines Planeten festzuhalten

 Forscher haben einen mysteriösen Planeten gefunden, der jegliches Licht verschlingt

 China behauptet, das größte Loch der Welt gefunden zu haben — es ist einer der gefährlichsten Orte des Planeten

Join the conversation about this story »




Next Page: 10000

Site Map 2018_01_14
Site Map 2018_01_15
Site Map 2018_01_16
Site Map 2018_01_17
Site Map 2018_01_18
Site Map 2018_01_19
Site Map 2018_01_20
Site Map 2018_01_21
Site Map 2018_01_22
Site Map 2018_01_23
Site Map 2018_01_24
Site Map 2018_01_25
Site Map 2018_01_26
Site Map 2018_01_27
Site Map 2018_01_28
Site Map 2018_01_29
Site Map 2018_01_30
Site Map 2018_01_31
Site Map 2018_02_01
Site Map 2018_02_02
Site Map 2018_02_03
Site Map 2018_02_04
Site Map 2018_02_05
Site Map 2018_02_06
Site Map 2018_02_07
Site Map 2018_02_08
Site Map 2018_02_09
Site Map 2018_02_10
Site Map 2018_02_11
Site Map 2018_02_12
Site Map 2018_02_13
Site Map 2018_02_14
Site Map 2018_02_15
Site Map 2018_02_15
Site Map 2018_02_16
Site Map 2018_02_17
Site Map 2018_02_18
Site Map 2018_02_19
Site Map 2018_02_20
Site Map 2018_02_21
Site Map 2018_02_22
Site Map 2018_02_23
Site Map 2018_02_24
Site Map 2018_02_25
Site Map 2018_02_26
Site Map 2018_02_27
Site Map 2018_02_28
Site Map 2018_03_01
Site Map 2018_03_02
Site Map 2018_03_03
Site Map 2018_03_04
Site Map 2018_03_05
Site Map 2018_03_06
Site Map 2018_03_07
Site Map 2018_03_08
Site Map 2018_03_09
Site Map 2018_03_10
Site Map 2018_03_11
Site Map 2018_03_12
Site Map 2018_03_13
Site Map 2018_03_14
Site Map 2018_03_15
Site Map 2018_03_16
Site Map 2018_03_17
Site Map 2018_03_18
Site Map 2018_03_19
Site Map 2018_03_20
Site Map 2018_03_21
Site Map 2018_03_22
Site Map 2018_03_23
Site Map 2018_03_24
Site Map 2018_03_25
Site Map 2018_03_26
Site Map 2018_03_27
Site Map 2018_03_28
Site Map 2018_03_29
Site Map 2018_03_30
Site Map 2018_03_31
Site Map 2018_04_01
Site Map 2018_04_02
Site Map 2018_04_03
Site Map 2018_04_04
Site Map 2018_04_05
Site Map 2018_04_06
Site Map 2018_04_07
Site Map 2018_04_08
Site Map 2018_04_09
Site Map 2018_04_10
Site Map 2018_04_11
Site Map 2018_04_12
Site Map 2018_04_13
Site Map 2018_04_14
Site Map 2018_04_15
Site Map 2018_04_16
Site Map 2018_04_17
Site Map 2018_04_18
Site Map 2018_04_19
Site Map 2018_04_20
Site Map 2018_04_21
Site Map 2018_04_22
Site Map 2018_04_23
Site Map 2018_04_24
Site Map 2018_04_25
Site Map 2018_04_26
Site Map 2018_04_27
Site Map 2018_04_28
Site Map 2018_04_29
Site Map 2018_04_30
Site Map 2018_05_01
Site Map 2018_05_02
Site Map 2018_05_03
Site Map 2018_05_04
Site Map 2018_05_05
Site Map 2018_05_06
Site Map 2018_05_07
Site Map 2018_05_08
Site Map 2018_05_09
Site Map 2018_05_15
Site Map 2018_05_16
Site Map 2018_05_17
Site Map 2018_05_18
Site Map 2018_05_19
Site Map 2018_05_20
Site Map 2018_05_21
Site Map 2018_05_22
Site Map 2018_05_23
Site Map 2018_05_24
Site Map 2018_05_25
Site Map 2018_05_26
Site Map 2018_05_27
Site Map 2018_05_28
Site Map 2018_05_29
Site Map 2018_05_30
Site Map 2018_05_31
Site Map 2018_06_01
Site Map 2018_06_02
Site Map 2018_06_03
Site Map 2018_06_04
Site Map 2018_06_05
Site Map 2018_06_06
Site Map 2018_06_07
Site Map 2018_06_08
Site Map 2018_06_09
Site Map 2018_06_10
Site Map 2018_06_11
Site Map 2018_06_12
Site Map 2018_06_13
Site Map 2018_06_14
Site Map 2018_06_15
Site Map 2018_06_16
Site Map 2018_06_17
Site Map 2018_06_18
Site Map 2018_06_19
Site Map 2018_06_20
Site Map 2018_06_21
Site Map 2018_06_22
Site Map 2018_06_23
Site Map 2018_06_24
Site Map 2018_06_25
Site Map 2018_06_26
Site Map 2018_06_27
Site Map 2018_06_28
Site Map 2018_06_29
Site Map 2018_06_30
Site Map 2018_07_01
Site Map 2018_07_02
Site Map 2018_07_03
Site Map 2018_07_04
Site Map 2018_07_05
Site Map 2018_07_06
Site Map 2018_07_07
Site Map 2018_07_08
Site Map 2018_07_09
Site Map 2018_07_10
Site Map 2018_07_11
Site Map 2018_07_12
Site Map 2018_07_13
Site Map 2018_07_14
Site Map 2018_07_15
Site Map 2018_07_16
Site Map 2018_07_17
Site Map 2018_07_18
Site Map 2018_07_19
Site Map 2018_07_20
Site Map 2018_07_21
Site Map 2018_07_22
Site Map 2018_07_23
Site Map 2018_07_24
Site Map 2018_07_25
Site Map 2018_07_26
Site Map 2018_07_27
Site Map 2018_07_28
Site Map 2018_07_29
Site Map 2018_07_30
Site Map 2018_07_31
Site Map 2018_08_01
Site Map 2018_08_02
Site Map 2018_08_03
Site Map 2018_08_04
Site Map 2018_08_05
Site Map 2018_08_06
Site Map 2018_08_07
Site Map 2018_08_08
Site Map 2018_08_09
Site Map 2018_08_10
Site Map 2018_08_11
Site Map 2018_08_12
Site Map 2018_08_13
Site Map 2018_08_15
Site Map 2018_08_16
Site Map 2018_08_17
Site Map 2018_08_18
Site Map 2018_08_19
Site Map 2018_08_20
Site Map 2018_08_21
Site Map 2018_08_22
Site Map 2018_08_23
Site Map 2018_08_24
Site Map 2018_08_25
Site Map 2018_08_26
Site Map 2018_08_27
Site Map 2018_08_28
Site Map 2018_08_29
Site Map 2018_08_30
Site Map 2018_08_31
Site Map 2018_09_01
Site Map 2018_09_02
Site Map 2018_09_03
Site Map 2018_09_04
Site Map 2018_09_05
Site Map 2018_09_06
Site Map 2018_09_07
Site Map 2018_09_08
Site Map 2018_09_09
Site Map 2018_09_10
Site Map 2018_09_11
Site Map 2018_09_12
Site Map 2018_09_13
Site Map 2018_09_14
Site Map 2018_09_15
Site Map 2018_09_16
Site Map 2018_09_17
Site Map 2018_09_18
Site Map 2018_09_19
Site Map 2018_09_20
Site Map 2018_09_21
Site Map 2018_09_23
Site Map 2018_09_24
Site Map 2018_09_25
Site Map 2018_09_26
Site Map 2018_09_27
Site Map 2018_09_28
Site Map 2018_09_29
Site Map 2018_09_30
Site Map 2018_10_01
Site Map 2018_10_02
Site Map 2018_10_03
Site Map 2018_10_04
Site Map 2018_10_05
Site Map 2018_10_06
Site Map 2018_10_07
Site Map 2018_10_08
Site Map 2018_10_09
Site Map 2018_10_10
Site Map 2018_10_11
Site Map 2018_10_12
Site Map 2018_10_13
Site Map 2018_10_14
Site Map 2018_10_15
Site Map 2018_10_16
Site Map 2018_10_17
Site Map 2018_10_18
Site Map 2018_10_19
Site Map 2018_10_20
Site Map 2018_10_21
Site Map 2018_10_22
Site Map 2018_10_23
Site Map 2018_10_24
Site Map 2018_10_25
Site Map 2018_10_26
Site Map 2018_10_27
Site Map 2018_10_28
Site Map 2018_10_29
Site Map 2018_10_30
Site Map 2018_10_31
Site Map 2018_11_01
Site Map 2018_11_02
Site Map 2018_11_03
Site Map 2018_11_04
Site Map 2018_11_05
Site Map 2018_11_06
Site Map 2018_11_07
Site Map 2018_11_08
Site Map 2018_11_09
Site Map 2018_11_10
Site Map 2018_11_11
Site Map 2018_11_12
Site Map 2018_11_13
Site Map 2018_11_14
Site Map 2018_11_15
Site Map 2018_11_16
Site Map 2018_11_17
Site Map 2018_11_18
Site Map 2018_11_19
Site Map 2018_11_20
Site Map 2018_11_21
Site Map 2018_11_22
Site Map 2018_11_23
Site Map 2018_11_24
Site Map 2018_11_25
Site Map 2018_11_26
Site Map 2018_11_27
Site Map 2018_11_28
Site Map 2018_11_29
Site Map 2018_11_30
Site Map 2018_12_01
Site Map 2018_12_02
Site Map 2018_12_03
Site Map 2018_12_04
Site Map 2018_12_05
Site Map 2018_12_06
Site Map 2018_12_07
Site Map 2018_12_08
Site Map 2018_12_09
Site Map 2018_12_10
Site Map 2018_12_11
Site Map 2018_12_12
Site Map 2018_12_13
Site Map 2018_12_14
Site Map 2018_12_15
Site Map 2018_12_16
Site Map 2018_12_17
Site Map 2018_12_18
Site Map 2018_12_19
Site Map 2018_12_20
Site Map 2018_12_21
Site Map 2018_12_22
Site Map 2018_12_23
Site Map 2018_12_24
Site Map 2018_12_25
Site Map 2018_12_26
Site Map 2018_12_27
Site Map 2018_12_28
Site Map 2018_12_29
Site Map 2018_12_30
Site Map 2018_12_31
Site Map 2019_01_01
Site Map 2019_01_02
Site Map 2019_01_03
Site Map 2019_01_04
Site Map 2019_01_06
Site Map 2019_01_07
Site Map 2019_01_08
Site Map 2019_01_09
Site Map 2019_01_11
Site Map 2019_01_12
Site Map 2019_01_13
Site Map 2019_01_14
Site Map 2019_01_15
Site Map 2019_01_16
Site Map 2019_01_17
Site Map 2019_01_18
Site Map 2019_01_19
Site Map 2019_01_20
Site Map 2019_01_21
Site Map 2019_01_22
Site Map 2019_01_23
Site Map 2019_01_24
Site Map 2019_01_25
Site Map 2019_01_26
Site Map 2019_01_27
Site Map 2019_01_28
Site Map 2019_01_29
Site Map 2019_01_30
Site Map 2019_01_31
Site Map 2019_02_01
Site Map 2019_02_02
Site Map 2019_02_03
Site Map 2019_02_04
Site Map 2019_02_05
Site Map 2019_02_06
Site Map 2019_02_07
Site Map 2019_02_08
Site Map 2019_02_09
Site Map 2019_02_10
Site Map 2019_02_11
Site Map 2019_02_12
Site Map 2019_02_13
Site Map 2019_02_14
Site Map 2019_02_15
Site Map 2019_02_16
Site Map 2019_02_17
Site Map 2019_02_18
Site Map 2019_02_19
Site Map 2019_02_20
Site Map 2019_02_21
Site Map 2019_02_22
Site Map 2019_02_23
Site Map 2019_02_24
Site Map 2019_02_25
Site Map 2019_02_26
Site Map 2019_02_27
Site Map 2019_02_28
Site Map 2019_03_01
Site Map 2019_03_02
Site Map 2019_03_03
Site Map 2019_03_04
Site Map 2019_03_05
Site Map 2019_03_06
Site Map 2019_03_07
Site Map 2019_03_08
Site Map 2019_03_09
Site Map 2019_03_10
Site Map 2019_03_11
Site Map 2019_03_12
Site Map 2019_03_13