Next Page: 10000

          Comment on How to Use Word Embedding Layers for Deep Learning with Keras by Jason Brownlee      Cache   Translate Page      
Either approach can be used, both do the same thing. Perhaps try both and see what works best for your specific dataset. The vectors for a given word are learned. After the model is finished training, the vectors are fixed for each word. If a word is not present during training, the model will not be able to support it. Embedding must be large enough to capture the relationship between words. Often 100 to 300 is more than enough for a large vocab.
          We analyzed 16,625 papers to figure out where AI is headed next      Cache   Translate Page      
by Karen Hao, MIT Technology Review Our study of 25 years of artificial-intelligence research suggests the era of deep learning is coming to an end. Through our analysis, we found three major trends: a shift toward machine learning during the late 1990s and early 2000s, a rise in the popularity of neural networks beginning in the […]
          Nvidia DLSS für RTX 2080 und Co.: Support in Metro Exodus, Battlefield 5 ab kommender Woche mit DLSS?      Cache   Translate Page      
09.02.2019 um 17:00 Uhr von Maurice Riebling – Die Liste an Spielen mit Unterstützung für Deep Learning Super Sampling (DLSS … (Orginal – Story lesen…)
          Comment on How to Choose Loss Functions When Training Deep Learning Neural Networks by sanjie      Cache   Translate Page      
hello Jason Brownlee, i really thanks for your blog to make me learn lots of AI . can you help me ? with binary cross_entropy task, can i make the output layer of Dense with 2 nodes not 1 like below ? model.add(Dense(2, activation='sigmoid'))
          We analyzed 16,625 papers to figure out where AI is headed next      Cache   Translate Page      
by Karen Hao, MIT Technology Review Our study of 25 years of artificial-intelligence research suggests the era of deep learning is coming to an end. Through our analysis, we found three major trends: a shift toward machine learning during the late 1990s and early 2000s, a rise in the popularity of neural networks beginning in the […]
          Scientifique en apprentissage profond / Deep Learning Scientist - Huawei Canada - Montréal, QC      Cache   Translate Page      
Located in Hong Kong, Shenzhen, Beijing, London, Paris, Montreal, Toronto and Edmonton, Noah’s Ark Lab is the flagship AI research lab of Huawei Technologies....
From Huawei Canada - Thu, 11 Oct 2018 23:46:40 GMT - View all Montréal, QC jobs
          Senior Solutions Architect -Autonomous Driving - NVIDIA - Santa Clara, CA      Cache   Translate Page      
Be an internal champion for Deep Learning and HPC among the NVIDIA technical community. Our success has been based on laser-focused industry vertical business...
From NVIDIA - Thu, 10 Jan 2019 01:54:23 GMT - View all Santa Clara, CA jobs
          Unfazed by legal blocks, Netmeds bets big on digital      Cache   Translate Page      
Netmeds is looking at using new technologies such as deep learning and data analytics to improve forecasting in terms of the demand of the products for pharma companies, reports Peerzada Abrar.
          Your locked phone could verify it's you by listening to your lips move      Cache   Translate Page      

LipPass is a user verification system for mobile devices that verifies your identity by the unique way that you move your lips. Developed by researchers at Shanghai Jiao Tong University, the system doesn't validate based on the sound of your voice but rather the movement of your mouth. From IEEE Spectrum:

The researchers realized the audio components on smartphones can be exploited to depict the movement of a person’s mouth by analyzing the acoustic signals that bounce off the user’s face. Since each person exhibits unique speaking behaviors—like lip protrusion and closure, tongue stretch and constriction, as well as jaw angle changes—this creates a unique Doppler effect profile that can be detected by the phone. The platform then uses a deep learning algorithm, which extracts distinct features from of the user’s Doppler profile as he or she speaks. Next, a binary tree-based approach is applied to distinguish the new user’s profile from previously registered users, which also helps discriminate between the identity of legal users and spoofers...

In a controlled laboratory environment, LipPass achieved an overall authentication accuracy of 95.3 percent... Across all environments and all kinds of attacks, the overall (spoof) success rate was less than 10 percent, though attacks that used the third method—a recording of the user's Doppler profile—did succeed nearly 20 percent of the time under controlled, laboratory conditions.

"Lip Reading-Based User Authentication Through Acoustic Sensing on Smartphones" (IEEE/ACM Transactions on Networking) Read the rest


          Associate / Full Professor - Head, Division of Breast Imaging -1800994 - Sunnybrook Health Sciences Centre - Toronto, ON      Cache   Translate Page      
Anne Martel, another SRI scientist has created a research program in machine/deep learning with applications in breast cancer....
From Indeed - Mon, 14 Jan 2019 16:14:21 GMT - View all Toronto, ON jobs
          Scientifique en apprentissage profond / Deep Learning Scientist - Huawei Canada - Montréal, QC      Cache   Translate Page      
Located in Hong Kong, Shenzhen, Beijing, London, Paris, Montreal, Toronto and Edmonton, Noah’s Ark Lab is the flagship AI research lab of Huawei Technologies....
From Huawei Canada - Thu, 11 Oct 2018 23:46:40 GMT - View all Montréal, QC jobs
          Sr Principal Cognitive Sftwr - Explainable AI      Cache   Translate Page      
Northrop Grumman Mission Systems in Beavercreek, Ohio sector is seeking a Sr Principal Cognitive Sftwr who will be an integral part of a Research, Technology Transition and Systems development Team that performs deep learning on problems ranging from Machine Translation, Automated Speech Recognition, Speech Synthesis, Image Processing, Cyber Solutions and Remote Sensing Applications. The selected applicant will have the opportunity to advance the state of the art for the intelligence production and analysis. The applicant will also have the opportunity to perform independent research and development. Conducts research in artificial intelligence (AI)/machine learning, and prototypes advanced machine learning and deep learning techniques to stretch the capability of autonomous systems research and development programs. Defines, develops, and delivers novel mathematical and statistical modeling and algorithm development to tackle the challenges of prediction, optimization, and classification.
          Sr Principal Cognitive Sftwr - Explainable AI      Cache   Translate Page      
Northrop Grumman Mission Systems in Beavercreek, Ohio sector is seeking a Sr Principal Cognitive Sftwr who will be an integral part of a Research, Technology Transition and Systems development Team that performs deep learning on problems ranging from Machine Translation, Automated Speech Recognition, Speech Synthesis, Image Processing, Cyber Solutions and Remote Sensing Applications. The selected applicant will have the opportunity to advance the state of the art for the intelligence production and analysis. The applicant will also have the opportunity to perform independent research and development. Conducts research in artificial intelligence (AI)/machine learning, and prototypes advanced machine learning and deep learning techniques to stretch the capability of autonomous systems research and development programs. Defines, develops, and delivers novel mathematical and statistical modeling and algorithm development to tackle the challenges of prediction, optimization, and classification.
          Advanced Driver Assistance Systems Research Engineer - Munich      Cache   Translate Page      
microTECH Global - London - in one of the following fields: - Research & Develop algorithms for sensor fusion - Research & Develop algorithms for mapping & localization... for Deep Learning in project related tasks - Develop and implement novel Mapping & Localization approaches - Code and Algorithm Documentation...
          Sr Principal Cognitive Sftwr - Explainable AI      Cache   Translate Page      
Northrop Grumman Mission Systems in Beavercreek, Ohio sector is seeking a Sr Principal Cognitive Sftwr who will be an integral part of a Research, Technology Transition and Systems development Team that performs deep learning on problems ranging from Machine Translation, Automated Speech Recognition, Speech Synthesis, Image Processing, Cyber Solutions and Remote Sensing Applications. The selected applicant will have the opportunity to advance the state of the art for the intelligence production and analysis. The applicant will also have the opportunity to perform independent research and development. Conducts research in artificial intelligence (AI)/machine learning, and prototypes advanced machine learning and deep learning techniques to stretch the capability of autonomous systems research and development programs. Defines, develops, and delivers novel mathematical and statistical modeling and algorithm development to tackle the challenges of prediction, optimization, and classification.
          Sr Principal Cognitive Sftwr - Explainable AI      Cache   Translate Page      
Northrop Grumman Mission Systems in Beavercreek, Ohio sector is seeking a Sr Principal Cognitive Sftwr who will be an integral part of a Research, Technology Transition and Systems development Team that performs deep learning on problems ranging from Machine Translation, Automated Speech Recognition, Speech Synthesis, Image Processing, Cyber Solutions and Remote Sensing Applications. The selected applicant will have the opportunity to advance the state of the art for the intelligence production and analysis. The applicant will also have the opportunity to perform independent research and development. Conducts research in artificial intelligence (AI)/machine learning, and prototypes advanced machine learning and deep learning techniques to stretch the capability of autonomous systems research and development programs. Defines, develops, and delivers novel mathematical and statistical modeling and algorithm development to tackle the challenges of prediction, optimization, and classification.
          Senior Computer Vision Engineer / Architect      Cache   Translate Page      
MA-Boston, I am currently working with several companies in the area who are actively hiring in the field of Computer Vision and Deep Learning. AI, and specifically Computer Vision and Deep Learning are my niche market specialty and I only work with companies in this space. I am actively recruiting for multiple levels of seniority and responsibility, from experienced Individual Contributor roles, to Team Lea
          Senior AI/Deep Learning Software Engineer - St Josephs Hospital and Medical Center - Phoenix, AZ      Cache   Translate Page      
Ability to align business needs to development and machine learning or artificial intelligence solutions. Experience in natural language understanding, computer...
From Dignity Health - Tue, 27 Nov 2018 03:06:49 GMT - View all Phoenix, AZ jobs
          V7 is looking for a Deep Learning Engineer (Vision)      Cache   Translate Page      
Forum: Vacant job positions Posted By: the_pat Post Time: Feb 8th, 2019 at 11:09 AM
          tensor - package tensor provides efficient and generic n-dimensional arrays in Go that are useful for machine learning and deep learning purposes      Cache   Translate Page      
Package tensor is a package that provides efficient, generic (by some definitions of generic) n-dimensional arrays in Go. Also in this package are functions and methods that are used commonly in arithmetic, comparison and linear algebra operations. The main purpose of this package is to support the operations required by Gorgonia.

          Senior Engineer, Innovation Lab - American Red Cross - Fairfax, VA      Cache   Translate Page      
Knowledge of Microsoft AI and Cognitive Services (Speech, Vision), Amazon AI (Lex, Polly, Rekognition, Deep Learning), Google (Speech, Translation, Vision)....
From American Red Cross - Tue, 08 Jan 2019 02:19:50 GMT - View all Fairfax, VA jobs
          (MEX-MEXICO CITY) SOLUTION ARCHITECT EDW      Cache   Translate Page      
**Job Description** Designs & implements cognitive solutions which may run on multiple platforms and composed of multiple software packages based on direction of Solution Architect. May also advise Solution Architect. Designs and develops the architecture of the Cognitive Solutions from a systemic standpoint. Responsible for creating the technical solution architecture for a given business problem and taking a leadership role in overseeing the ultimate development, integration and testing of the solution. Requires in-depth knowledge of system engineering principles, cloud architectures, awareness of behavioral characteristics of probabilistic and stochastic systems, solid understanding of system decomposition techniques, and the art and science of system synthesis using available cognitive technology. Requires in-depth knowledge of system engineering principles, cloud architecture, awareness of behavioral characteristics of probabilistic and stochastic systems, solid understanding of system decomposition techniques, and the art and science of system synthesis using available cognitive technology. Expected to know the capabilities of Watson technology suite, and experience in selecting complementary analytics components for development of solution blueprint, accounting for performance architecture and engineering of a fully functional cognitive system. Expected to have a thorough understanding of content formats, representations, data sources, content management systems and interfaces to these, with the goal of covering the full information path from source to knowledge base and from input to processing the content in Cognitive Computing solutions. Expected to have knowledge and experience in the following skills: Data Science, Machine Learning, Git, Agile, SQL, Python, R, Predictive Modeling, Algorithms, Web Scraping, TensorFlow, Deep Learning, Statistics, Natural Language Processing, Cognitive, IBM Watson Conversation Service Foundation, Watson, Cognitive Market, Cognitive Technologies, Cloud, Cloud_Cognitive, Analytics, Cloud_Sales, Cloud_Seller, Bluemix, Watson, IoT, Data Science, IBM and Big Data platforms e.g. Hadoop, Hive, Spark, Hortonworks, Watson Data platform **Required Technical and Professional Expertise** Requires in-depth knowledge of system engineering principles, cloud architectures, awareness of behavioral characteristics of probabilistic and stochastic systems, solid understanding of system decomposition techniques, and the art and science of system synthesis using available cognitive technology. Requires in-depth knowledge of system engineering principles, cloud architecture, awareness of behavioral characteristics of probabilistic and stochastic systems, solid understanding of system decomposition techniques, and the art and science of system synthesis using available cognitive technology. **Preferred Tech and Prof Experience** Expected to have knowledge and experience in the following skills: Data Science, Machine Learning, Git, Agile, SQL, Python, R, Predictive Modeling, Algorithms, Web Scraping, TensorFlow, Deep Learning, Statistics, Natural Language Processing, Cognitive, IBM Watson Conversation Service Foundation, Watson, Cognitive Market, Cognitive Technologies, Cloud, Cloud_Cognitive, Analytics, Cloud_Sales, Cloud_Seller, Bluemix, Watson, IoT, Data Science, IBM and Big Data platforms e.g. Hadoop, Hive, Spark, Hortonworks, Watson Data platform **EO Statement** IBM is committed to creating a diverse environment and is proud to be an equal opportunity employer. All qualified applicants will receive consideration for employment without regard to race, color, religion, gender, gender identity or expression, sexual orientation, national origin, genetics, disability, age, or veteran status. IBM is also committed to compliance with all fair employment practices regarding citizenship and immigration status.
          Clues to Our Unknown Ancestors Are Hiding in Our Genome      Cache   Translate Page      
Humans interbred with Neanderthals and Denisovans, but were there others? Paleontologists are using deep learning to find lost branches of our family tree.
          labmanager-georgerpu added to PyPI      Cache   Translate Page      
Python package for managing deep learning experiments in PyTorch.
          Associate Partner, Cognitive and Analytics - Financial Services - IBM - United States      Cache   Translate Page      
Solve business challenges and support business decisions by using advanced analytics techniques and deep learning algorithms....
From IBM - Thu, 24 Jan 2019 11:49:34 GMT - View all United States jobs
          Your locked phone could verify it's you by listening to your lips move      Cache   Translate Page      

LipPass is a user verification system for mobile devices that verifies your identity by the unique way that you move your lips. Developed by researchers at Shanghai Jiao Tong University, the system doesn't validate based on the sound of your voice but rather the movement of your mouth. From IEEE Spectrum:

The researchers realized the audio components on smartphones can be exploited to depict the movement of a person’s mouth by analyzing the acoustic signals that bounce off the user’s face. Since each person exhibits unique speaking behaviors—like lip protrusion and closure, tongue stretch and constriction, as well as jaw angle changes—this creates a unique Doppler effect profile that can be detected by the phone. The platform then uses a deep learning algorithm, which extracts distinct features from of the user’s Doppler profile as he or she speaks. Next, a binary tree-based approach is applied to distinguish the new user’s profile from previously registered users, which also helps discriminate between the identity of legal users and spoofers...

In a controlled laboratory environment, LipPass achieved an overall authentication accuracy of 95.3 percent... Across all environments and all kinds of attacks, the overall (spoof) success rate was less than 10 percent, though attacks that used the third method—a recording of the user's Doppler profile—did succeed nearly 20 percent of the time under controlled, laboratory conditions.

"Lip Reading-Based User Authentication Through Acoustic Sensing on Smartphones" (IEEE/ACM Transactions on Networking) Read the rest


          AI/Machine Learning/Deep Learning Application - Intern - Seagate Technology - Singapore      Cache   Translate Page      
About the Role : We are looking for candidates who are highly passionate about data science and want to apply artificial intelligence/ deep learning/ neural...
From Seagate Technology - Mon, 28 Jan 2019 13:47:47 GMT - View all Singapore jobs
          Senior AI/Deep Learning Software Engineer - St Josephs Hospital and Medical Center - Phoenix, AZ      Cache   Translate Page      
Ability to align business needs to development and machine learning or artificial intelligence solutions. Experience in natural language understanding, computer...
From Dignity Health - Tue, 27 Nov 2018 03:06:49 GMT - View all Phoenix, AZ jobs
          தமிழின் எதிர்காலமும் தகவல் தொழில்நுட்பமும்      Cache   Translate Page      
தமிழின் எதிர்காலமும் தகவல் தொழில்நுட்பமும் 25. தமிழ் – ஆங்கிலம் இயந்திர மொழிபெயர்ப்பு Posted by இரா. அசோகன் October 4, 2018 இயந்திர மொழிபெயர்ப்புக்கு மூன்று வகையான அணுகல்கள் உள்ளன. இவை விதி சார்ந்த இயந்திர மொழிபெயர்ப்பு (Rule-Based Machine Translation – RBMT), புள்ளிவிவர இயந்திர மொழிபெயர்ப்பு (Statistical Machine Translation – SMT) மற்றும் கலப்பு (Hybrid) இயந்திர மொழிபெயர்ப்பு. விதி சார்ந்த இயந்திர மொழிபெயர்ப்பு விதி சார்ந்த இயந்திர மொழிபெயர்ப்பில் இந்த இரண்டு வகைகள் உண்டு. மேலோட்டமான மொழிமாற்றம் (Shallow transfer) மற்றும் ஆழ்ந்த மொழிமாற்றம் (Deep transfer). அபெர்டியம் (Apertium) ஒரு கட்டற்ற திறந்த மூல விதி சார்ந்த இயந்திர மொழிபெயர்ப்பு தளம் ஆகும். இது குனு பொது உரிமத்தின் கீழ் வெளியிடப்பட்டுள்ளது. இது ஒரு மேலோட்டமான-மொழிமாற்ற இயந்திர மொழிபெயர்ப்பு அமைப்பு ஆகும். தற்பொழுது, அபெர்டியம், இந்தி – உருது சேர்த்து, 40 நிலையான மொழி இணைகளை வெளியிட்டுள்ளது, இது இந்தி – உருது போன்ற நெருக்கமாக தொடர்புடைய மொழிகளுக்கு இடையில் மொழிபெயர்க்கவே வடிவமைக்கப்பட்டது, இருப்பினும் இது சமீபத்தில் மாறுபட்ட மொழி இணைகளுக்கும் விரிவாக்கப்பட்டுள்ளது. ஒரு புதிய இயந்திர மொழிபெயர்ப்பு அமைப்பு உருவாக்க, XML வடிவங்களில் மொழி தொடர்பான தரவுகளை (அகராதிகள், விதிகள்) மட்டும் உருவாக்க வேண்டும். தமிழ் ஒரு கட்டற்ற சொல் வரிசை மொழி. ஆகவே தமிழிலிருந்து ஆங்கிலத்துக்கு மொழிபெயர்ப்பதில் துல்லியம் குறைவு. ஆங்கிலத்திலிருந்து தமிழுக்கு மொழிபெயர்ப்பதில் துல்லியம் அதிகம். மூல மொழியில் ஒரு சொற்பகுப்பியல் ஆய்வியும் இலக்கு மொழியில் ஒரு சொற்பகுப்பியல் உருவாக்கியும் அபெர்டியம் இயந்திர மொழிபெயர்ப்பை தமிழுக்கு செயற்படுத்த முக்கியமானவை. ஹைதராபாத் பல்கலையில் பரமேஸ்வரி இவற்றை உருவாக்க செய்த முயற்சியின் முடிவுகள் இங்கே. சுமார் 68 ஆயிரம் சொற்கள் கொண்ட அகராதியைப் பயன்படுத்தி இருவேறு உரைத்தொகுப்புகளில் 85% சொற்களை மொழிபெயர்ப்பு செய்ய முடிந்ததாம். இயந்திர மொழிபெயர்ப்பு செய்முறை வரிசை விதி சார்ந்த இயந்திர மொழிபெயர்ப்புக்கு கீழ்க்கண்ட செய்முறை வரிசையைப் பின்பற்றுகிறோம்: பகுப்பாய்வு: பகுப்பாய்வின் போது, உள்ளீட்டைப் பாகுபடுத்த மூல மொழியில் செயலிகளும், இலக்கணம் மற்றும் அகராதியும் தேவை. மொழிமாற்றம்: வாக்கியக் கட்டமைப்பு மாற்றத்திற்கு ஒரு இலக்கணம் தேவை. சொற்களை மொழிமாற்றம் செய்ய இருமொழி அகராதி தேவை. உருவாக்கம்: கடைசியாக, இலக்கு மொழியில் உருவாக்க இலக்கணமும், அகராதியும் இறுதி மொழிபெயர்ப்புக்குத் தேவை. தமிழ் – ஆங்கிலம் இயந்திர மொழிபெயர்ப்பு புள்ளிவிவர இயந்திர மொழிபெயர்ப்பு மருத்துவ, நிதி அல்லது தொழில்நுட்பம் போன்ற குறிப்பிட்ட துறைக்கான பயிற்சி தரவுகளைப் பயன்படுத்தி பயிற்றுவித்தால், புள்ளிவிவர இயந்திர மொழிபெயர்ப்பு இயந்திரம் உயர் வெளியீடு தரத்தை நிரூபித்துள்ளது. ஒரு குறிப்பிட்ட துறைக்கு குறைந்த பட்சம் இரண்டு மில்லியன் சொற்கள் தேவை என்று பொதுவாகக் கருதப்பட்டாலும், அதைவிடக் குறைந்த தரவுகளை வைத்தே ஏற்றுக்கொள்ளத்தக்க தரத்தை அடைய முடியும் என்று சொல்கிறார்கள். நல்ல தரமான சீரமைக்கப்பட்ட இருமொழித் தொகுப்புகள் உருவாக்க செலவு அதிகம். எனினும் உருவாக்கிய பின்னர் அது நிறுவனத்துக்கு மதிப்பு மிக்க சொத்தாகும். புள்ளியியல் இயந்திர மொழிபெயர்ப்புக்கு மோசஸ் (Moses) ஒரு திறந்த மூல மென்பொருள். ஒரு மூல மொழியிலிருந்து ஒரு இலக்கு மொழிக்கு உரைகளை மொழிபெயர்ப்பு செய்ய புள்ளிவிவர மாதிரிகளை பயிற்றுவிக்க பயன்படுகிறது. பயிற்றுவித்த இந்த மாதிரிகளை வைத்து மூல மொழி உரைகளை மொழிபெயர்க்கலாம். பயிற்சி கொடுக்க இரண்டு மொழிகளில் வாக்கியங்கள் சீரமைக்கப்பட்ட ஒரு இணை உரைத்தொகுப்பு வேண்டும். இது LGPL உரிமத்தின் கீழ் வெளியீடு செய்யப்பட்டுள்ளது. விண்டோஸ், மேக் மற்றும் லினக்ஸ் கணினிகளில் ஓடும். ஐரோப்பிய ஒன்றிய நிதியுதவியில் உருவாக்கப்பட்டது. கலப்பு இயந்திர மொழிபெயர்ப்பு கலப்பு (Hybrid) இயந்திர மொழிபெயர்ப்பில் பொதுவாக RBMT மற்றும் SMT இரண்டும் உண்டு. இதை SYSTRAN போன்ற தனியுரிம நிறுவனங்களே பெரும்பாலும் பயன்படுத்துகின்றன. நரம்பியல் இயந்திர மொழிபெயர்ப்பு நரம்பியல் இயந்திர மொழிபெயர்ப்பு (Neural Machine Translation – NMT) என்பது ஒரு பெரிய செயற்கை நரம்பியல் பிணையத்தைப் பயன்படுத்தி அடுத்து வரும் சொற்களின் தொடர்ச்சியைக் கணிக்கிறது. இது பொதுவாக ஒருங்கிணைந்த முன்மாதிரியை வைத்து முழு வாக்கியங்களை உருவாக்க முயற்சிக்கிறது. நரம்பியல் இயந்திர மொழிபெயர்ப்பு என்பது புள்ளிவிவர இயந்திர மொழிபெயர்ப்பில் (SMT) வழக்கமாகச் செய்வதைவிடத் தலைகீழான மாற்றம் அல்ல. ஆகவே இதுவும் புள்ளிவிவர இயந்திர மொழிபெயர்ப்பில் ஒரு வகைதான். ஆனால் மிகவும் மேம்படுத்தப்பட்ட வகை. இதில் மொழி மாதிரியும், மொழிபெயர்ப்பு மாதிரியும், மறு சீரமைப்பு மாதிரியும் தனித்தனியாகக் கிடையாது. ஆனால் அடுத்து வரும் ஒவ்வொரு சொல்லாகக் கணிக்கும் ஒரு தனி வரிசைமுறை மாதிரி மட்டும் உண்டு. முழு மூல வாக்கியத்தையும் மற்றும் ஏற்கனவே தயாரிக்கப்பட்ட இலக்கு சொல் வரிசைமுறையையும் வைத்து இந்த வரிசைக் கணிப்பு நிர்ணயிக்கப்படுகிறது. ஆழமான NMT இதனுடைய நீட்டிப்பு ஆகும். ஒரே ஒரு அடுக்குக்குப் பதிலாக இது பல நரம்பியல் பிணைப்பு அடுக்குகளை செயல்படுத்துகிறது. இதை ஆழ்ந்த கற்றல் (Deep Learning) என்றும் சொல்கிறார்கள். இயந்திர மொழிபெயர்ப்பில் நரம்பியல் பிணையங்களைப் பயன்படுத்துவதற்கான முதல் அறிவியல் அறிக்கை 2014 இல் வெளிவந்தது. முதன்முதலாக 2015 ஆம் ஆண்டில், பொது இயந்திர மொழிபெயர்ப்பு போட்டியில் NMT அமைப்பு இருந்தது. அடுத்த ஆண்டு வெற்றியாளர்களில் 90% NMT பயன்படுத்தியவர்கள். 2016 க்குள், சிறந்த இயந்திர மொழிபெயர்ப்பு அமைப்புகளில் பெரும்பாலானவை NMT அமைப்புகள்தான். கூகிள், மைக்ரோசாப்ட் மற்றும் யாண்டெக்ஸ் மொழிபெயர்ப்பு சேவைகள் இப்போது NMT ஐயே பயன்படுத்துகின்றன. திறந்த மூல நரம்பியல் இயந்திர மொழிபெயர்ப்பு அமைப்பு, OpenNMT, ஹார்வர்ட் இயல்மொழி ஆய்வுக் குழுவால் வெளியிடப்பட்டது. OpenNMT என்பது நரம்பியல் இயந்திர மொழிபெயர்ப்புக்கான திறந்த மூல முன்முயற்சியாகும். இது அண்மைய ஆழ்ந்த கற்றல் தொழில்நுட்பத்தையே பயன்படுத்துகிறது. இது தற்போது 3 முக்கிய செயலாக்கங்கள் கொண்டது: லுவா (Lua), பைதான் – பைடார்ச்(PyTorch), பைதான் – டென்சார்ஃப்ளோ(TensorFlow). இவை மூன்றுமே தற்போது பராமரிக்கப்படுகின்றன. மூல நிரல்கள் கிட்ஹப்பில் பகிரப்பட்டுள்ளன. OpenNMT MIT உரிமத்தின் கீழ் வெளியிடப்பட்டுள்ளது. பங்களிப்போர் எண்ணிக்கையையும், பயனர் ஆர்வத்தைக் குறிக்கும் விண்மீன் குறியீடுகளையும் பார்த்தால் கூகிளின் டென்சார்ஃப்ளோதான் (TensorFlow) சவாலில்லாமல் முதலிடத்திலுள்ளது. இது அபாச்சி 2.0 திறந்த மூல உரிமத்தின் கீழ் வெளியிடப்பட்டுள்ளது. இது பைதான் மொழியில் எழுதப்பட்டுள்ளது. ஆனால் கருநிரல் C ++ மற்றும் CUDA வில் எழுதப்பட்டுள்ளது. CUDA என்பது வரைபடச் செயலகம் (GPU) நிரலாக்கம் செய்ய என்விடியா (Nvidia) மொழி. OpenNMT மென்பொருளை பயன்படுத்தி பயிற்றுவிக்க உங்களுக்கு இரண்டு கோப்புகள்தான் தேவை – மூல மொழிக்கோப்பு மற்றும் இலக்குமொழிக்கோப்பு. ஒவ்வொரு வரியிலும் ஒரு வாக்கியம்தான் இருக்க வேண்டும். சொற்களுக்கு இடையில் இடைவெளி இருக்க வேண்டும். வரைபடச் செயலகம் (GPU) சில்லு உள்ள கணினி தேவை OpenNMT நிரலைப் பயன்படுத்தி பயிற்றுவிக்க NVIDIA நிறுவனத்தால் தயாரிக்கப்பட்ட வரைபட செயலாக்கச் (GPU) சில்லு உள்ள கணினி தேவை. அதுவும் CUDA என்ற கருவித்தொகுதி மென்பொருள் ஓடக்கூடியதாக இருக்க வேண்டும். உங்கள் கணினியில் இவை உள்ளனவா என்று பார்க்க இங்கே செல்லவும். பெரிய அளவில் தரவைச் செயலாக்க வேண்டியிருப்பதால், பொதுவாக எந்த இயந்திர கற்றல் திட்டத்திற்கும் வரைபடச் செயலகம் சில்லு வைத்த கணினி தேவைப்படுகிறது. இயந்திர மொழிபெயர்ப்பு அணுகல்களில் நல்லதும் கெட்டதும் RBMT அமைப்புகள் மொழியின் மூன்று முக்கியமான குறைபாடுகளை எதிர்கொள்கின்றன: 1) ஒரு இயந்திரத்தைப் பொருத்தவரை மொழியின் உள்ளார்ந்த தெளிவின்மை. மனிதர்களைப் போல சொல்லின் பொருள் சார்ந்த உள்ளுணர்வு இயந்திரங்களுக்குக் கிடையாது. 2) விலக்கு அடிப்படையிலான இலக்கண அமைப்பு. 3) எப்போதும் விரிவாகிக்கொண்டிருக்கும் கலைச்சொற்கள் அகராதி. NMT அணுகுமுறை மொழி கட்டமைப்பை நன்றாகக் கற்றுக் கொள்ளும், ஆனால் RBMT அல்லது SMT போல் நீண்ட சொல் பட்டியலை ஞாபகம் வைத்துக் கொள்வதில் அவ்வளவு சிறப்பாக இல்லை. சொற்களின் பட்டியலை RBMT நன்றாகக் கையாளும், ஆனால் வாக்கிய அமைப்பு சரியாக வராது. SMT இவற்றுக்கு இடையில் உள்ளது. வாக்கியங்கள் சரளமாக வருவது போலிருக்கும், ஆனால் சில நேரங்களில் மொழிபெயர்ப்பு முற்றிலும் தவறானதாக இருக்கலாம். NMT பற்றிய சுவாரசியமான அம்சம் என்னவென்றால், PBSMT (சொற்றொடரை அடிப்படையாகக் கொண்ட SMT) யை விட இரைச்சல் மிகுந்த தரவுக்கு சகிப்புத்தன்மை அதிகம். பொதுவான NMT அமைப்புகளில் ஒரு குறிப்பிடத்தக்க பலவீனம் என்னவென்றால் மிகவும் அரிதான வார்த்தைகளை அவை சரியாக மொழிபெயர்ப்பதில்லை. —————– இத்தொடரில் அடுத்த கட்டுரை: சொற்பிழைத் திருத்தி தமிழுக்குச் சொல்திருத்தியே தேவையில்லை என்றொரு கருத்து. உரையில் சொற்பிழை சரிபார்ப்பு பின்வரும் படிகளைக் கொண்டுள்ளது. வேட்பு சொற்கள். ஹன்ஸ்பெல் திறந்த மூல சொற்பிழைத் திருத்தி. தமிழுக்கு நான் உருவாக்கிய ஹன்ஸ்பெல் பின்னொட்டு விதிகள். லேங்குவேஜ் டூல் திறந்த மூல சொற்பிழைத் திருத்தி. http://www.kaniyam.com/tamil-english-machine-translation/
          Framework for Better Deep Learning      Cache   Translate Page      

Modern deep learning libraries such as Keras allow you to define and start fitting a wide range of neural network models in minutes with just a few lines of code. Nevertheless, it is still challenging to configure a neural network to get good performance on a new predictive modeling problem. The challenge of getting good […]

The post Framework for Better Deep Learning appeared first on Machine Learning Mastery.


          La ética del chatbot en la empresa, los ingenieros y los hackers.      Cache   Translate Page      
Hace unos años atrás, uno de los motivos de argumentación sobre por qué el software comercial de código no abierto debía ser abierto era la "Ética". Algunos decían  que "no es ético hacer programas que no te den las libertades del software libre". Ese punto de vista, a mí personalmente, siempre me resulto un tanto desproporcionado. Utilizar palabras como "Libertad" o "Ética" para un programa de contabilidad de una empresa o un gestor de logs de un TPV con el que una empresa hace negocio, me parecía demasiado exagerado. Libertad o Ética son palabras muy grandes que en la historia de la humanidad han sido motivo de grandes decisiones y dramas, como para tachar a un ingeniero que hace un programa de contabilidad para una empresa de No Ético por no haber publicado el código fuente o entregado el software con una licencia concreta.

Figura 1: La ética del chatbot en la empresa, los Ingenieros y los hackers.

Ahora, con la llegada de la Inteligencia Artificial, aparecen nuevos debates sobe la Ética y de nuevo veo a mucha gente apropiándose de capacidades sobre palabras que son muy grandes, como si fueran a poder articular la forma correcta de aplicar la Ética en la AI de una forma mágica. Veo gente que habla de este tema con ligereza y simplismo, sin haber hecho tecnología nunca, y encasillando los roles de los profesionales de una empresa con ideas preconcebidas. Momentos que traen a mi memoria la frase que dijo Linus Torvarlds a un periodista durante un entrevista y de la que siempre hablo: "El tiempo de soluciones sencillos a problemas sencillos hace tiempo que pasó". Y dejadme que os explique esto de la forma en que yo lo veo, que en cierta manera me incomodan algunas posturas. 

Ética y Moral

Normalmente se confunden los términos sobre lo que es ético o no, con lo que la moral considera qué es correcto o qué es incorrecto. Es decir, desde cosas tan sencillas como dar los buenos días, felicitar los cumpleaños, usar lenguaje formal, coloquial, insultar, usar lenguaje inclusivo, hasta cosas más complejas como ayudar a localizar a un prófugo de la justicia, gestionar un arsenal de bombas nucleares o saltarse la ley para defender tus ideales. Preguntas a veces muy difíciles de contestar como "¿Debe una empresa saltarse la ley para defender algún ideal?", "¿Debe crear un software espía una empresa de seguridad para luchar en la Guerra contra el Terror?"."¿Debe hacer una empresa un software o un negocio que atente contra el bienestar de las personas maximizando el beneficio de los accionistas?"

Sí, preguntas muy complicadas que yo suelo contar con casos muy específicos y concretos como el de la publicidad dirigida en base a datos que vemos en Internet, donde las empresas pueden explotar tus debilidades para hacer su negocio. ¿Se deben poner anuncios de bebidas a personas con adición al alcohol? ¿Es ético poner anuncios de apuestas o gambling en frente a personas con ludopatía? ¿O por el contrario debemos utilizar la tecnología para justo lo contrario? Se deben o no, explotar, en definitiva, las debilidades humanas tal y como decía Sean Parker, uno de los que co-creadores de la red social, que hacían conscientemente cuando estaban construyendo el gigante que es hoy Facebook.

Como veis, el debate puede ser arduo, y va mucho más allá de que un ingeniero decida el texto de contestación de un chatbot, que como sabéis todos los que habéis hecho tecnología son como los textos de la web, o los menús de las aplicaciones. Es decir, que pasan por los equipos de User eXperience, después de haber pasado por los de User Research, y que van alienados con los mensajes y valores de comunicación de los equipos de marca.

No, el debate no es tan sencillo como si un bot debe decir los buenos días o usar lenguaje inclusivo, que por supuesto se decide en esas áreas que acabo de citar. El debate puede plantear grandes discusiones que entroncar los valores de la empresa con el negocio, y con la visión de que una empresa debe ser de ayudar a las sociedades en las que opera.

Y por supuesto las respuestas no son tan evidentes, ni al alcance de un debate de opiniones de gente de todo tipo. No basta con tener buenos valores como persona para entender todas las implicaciones. Ni ser una experta en Ética para saber si esa tecnología va a derivar en otra cosa. Los debates no son tan sencillos y se tienen, cada uno en un lugar diferente. Yo usé, para explicar la complejidad de la zona gris, un par de posibles proyectos empresariales para ayudar a decidir dónde invertir o qué empleados se deben despedir. Como he dicho, yo uso HIRE e INVIERTE, mis A.I. inventadas, para explicar lo difícil de aplicar la Ética en proyectos de empresas. 

HIRE e INVIERTE

En el debate que yo proponía HIRE como un sistema se dedica a seleccionar qué empleados van a entrar en una fase de low-performance usando datos públicos en algoritmos de Analítica Predictiva. Esto, que puede parecer algo raro, no es ni mucho menos descabellado y dentro del mundo de la Ciberseguridad, la disciplina de Human Behaviour Analytics es una de las desarrollada para detectar empleados maliciosos, empleados que van a irse de la compañía y entrar en una fase mayor probabilidad de robo de secretos industriales o, simplemente, que van a bajar su rendimiento laboral.

El segundo de los servicios, INVIERTE, decide en qué empresas quiere invertir en función del performance de la compañía. Y por lo tanto en el performance de sus empleados. En este caso, analizar este rendimiento se puede hacer de muchas maneras. Desde analizar qué medidas de seguridad tiene, hasta saber qué mecanismos de control a los empleados aplica, o qué datos de absentismo laboral está alcanzando.

La aplicación de los dos sistemas a la vez, siguiendo una teoría evolutiva de esas que tan bien explica El Gen Egoísta, lleva a que la aplicación de HIRE en empresas pueda llevar a despedir a personas en situaciones de enfermedad no detectada - como una depresión por estrés a punto de diagnosticarse o por hechos acaecidos en su vida personal -, o simplemente una mujer que esté embarazada y no lo sepa. Y HIRE estaría haciendo bien el trabajo para el que lo han programado, tendría empleados con alto performance y haría, con alta probabilidad, que los resultados económicos de la empresa fueran mejores.

¿Podría llegar un sistema informático - y fijaos que explícitamente no utilizo AI - llegar a detectar un embarazo antes incluso de que lo sepa la persona embarazada? Pues conscientemente no, pero inconscientemente sí. Al final las técnicas Human Behaviour Analytics utilizando los sistemas de Analítica Predictiva, pueden detectar quién está a punto de entrar en low-performance. Y como un porcentaje de esos casos son personas que pueden entrar en low-performance por su situación personal - sea conocida conscientemente o no por el propio individuo - el sistema lo podría detectar.

Quizá a alguien que no entienda bien cómo funcionan las técnicas de Machine Learning hoy en día, pero hace tiempo que dejamos de explicarle a un sistema informático de visión artificial cómo es una vaca. Las primeras técnicas de reconocimiento de vacas - que es el ejemplo que utilizo ya para explicarlo - intentaban programar las reglas de conocimiento, explicando que una vaca tiene cuatro patas - normalmente - que tiene dos cuernos pero no muy grandes, que las hay de manchas pero también de pelo, etcétera. Fijaos qué complicado es explicarle a un sistema informático es una vaca.

Hoy en día, con las técnicas de Machine Learning, y sobre todo con los algoritmos de Deep Learning basados en Redes Neuronales, lo que se le hace es exactamente lo que hicieron con nosotros. Nos llevan a granjas a ver vacas y cuando salían en la tele nuestros padres nos decían "Mira una vaca". Es decir, le enseñamos todas las fotos y vídeos de vacas que podemos para que el modelo aprenda qué es una vaca. Si tu buscas en las fotos de tu iPhone por "perro", te sacará las fotos que hayas hecho en las que haya un perro no porque las has etiquetado, no porque haya reconocido un animal de cuatro patas moviendo una cola. Lo hará porque hay un modelo entrenado que ha visto millones de perros y "sabe" lo que es un perro "casi" como tú lo sabes.

Es decir, que un sistema como HIRE sería capaz de detectar de todos los datos que hay en un sistema de Human Behaviour Analytics si un empleado va a entrar en low-performance sin necesidad de saber los motivos de por qué va a entrar en low-performance. Es decir, fríamente, analizando los datos, es capaz de predecirlo. ¿Habéis visto Minority Report? Pues de esto iba.

Y ahora lo contrario, ¿Podría un sistema informático como INVIERTE llegar a detectar la aplicación de un sistema como HIRE en una empresa? Por supuesto que sí. Teniendo datos de gestión de los recursos humanos, datos de bajas, etcétera, podría llegar a detectarlo. Pero realmente sería como con el caso del perro. No me importa si lo tienes o no, lo que sucede es que los datos que se muestran reflejan que una empresa se gestiona como sí lo tuviera o porque lo tiene. Los Side-Channels se han utilizado durante años para inferir datos que parecen ocultos. Pero es más básico aún. ¿Qué más le da a INVIERTE si una empresa tiene HIRE o una persona responsable de Recursos Humanos con la misma intuición que HIRE?

En esos casos, aplicar un sistema como HIRE en una empresa podría maximizar el rendimiento de la organización y generar más beneficios al tener empleados en mejor rendimiento, e INVIERTE lo podría detectar y premiar con la inversión de capital en las compañías que lo hacen.

Y ahora llega el momento ¿Sería "Ético" usar INVIERTE? ¿Sería Ético usar un sistema que pueda incentivar el uso de HIRE? ¿Pero yo como inversor no debo premiar a las empresas de inversión que generan más retorno de inversión de mi capital? Probablemente muchos, llegados por este punto de la narración muchos pensaréis que la aplicación de los dos sistemas sin ningún control es peligroso para la sociedad.

Ahora veamos otro punto de vista. Desacoplemos los dos sistemas. ¿Sería ético para una empresa que hace inversiones con los ahorros de trabajadores que buscan tener dinero para su retiro NO utilizar tecnología para analizar de la manera más acertada posible cuál va a ser el rendimiento futuro de las compañías donde va a poner su dinero? Probablemente algunos penséis que no, y de hecho si un administrador no da los mejores beneficios puede ser despedido hasta de su propia empresa, como le pasó a Steve Jobs en Apple cuando LISA no funcionó como debía.

Pero entonces, si unas empresas deciden ser "Éticas" siguiendo los  principios morales que algunos pensáis a esta altura de la explicación que hay que defender, y no crean HIRE en su compañía, sucedería que los grupos de inversión que usen INVIERTE  dejen de invertir dinero en ellas. Y les iría mal, con lo que la teoría evolutiva les llevaría a desaparecer o a cambiar al equipo directivo. Una situación similar a la que sucede con todas las empresas y directivos que se han extinguido atrapados por el Tsunami de la disrupción tecnológica.

Ahora quitemos la tecnología del medio. Al final, el trabajo de HIRE y de INVIERTE son trabajos muy comunes de personas en las organizaciones. Personas de unidades de Recursos Humanos o de Análisis de Inversión que utilizan herramientas más artesanas, como conversaciones, análisis personal de emociones, resultados en hojas Excel con KPIs, funciones de progresión y estadística para decidir las mismas cosas. Quién no es bueno para la empresa y dónde debe invertir una empresa.

Si una persona de RRHH despide a una mujer que está embarazada pero no lo sabe ninguna de las dos, o si un analista de inversiones pone el dinero en una empresa analizando datos en su Excel y le da que una empresa va a tener mal futuro porque tiene muchas bajas y ha bajado la carga de productividad porque ha habido muchas bajas por enfermedad o maternidad... ¿Sería Ético o no? 

Probablemente muchos penséis que sí. Que es Ético porque en el caso de los RRHH nadie sabía nada. Y en el segundo porque el analista hace un análisis frío del futuro de la empresa con una hoja de Excel. Hacen su trabajo. Y así funcionan muchas empresas en su día a día. Basándose en las complejas decisiones que toman cerebros de personas a las que admiramos si llevan su empresa a buen término. Pero... ¿no es lo mismo el caso de HIRE e INVIERTE y la vaca? Al final, HIRE e INVIERTE no saber por qué va a entrar en low-performance o por qué a una empresa le va a ir bien o mal. Simplemente lo saben.

Los datos hablan... y a lo mejor no lo sabes

Lo cierto es que en uno de los casos estamos usando un frío sistema informático que usa datos y algoritmos - que pueden ser sencillos, no necesitan ser AI - y en el otro el potentísimo cerebro humano. Y los datos.... en ambos casos pueden resultar difícil de catalogar. Difícil de saber si realmente pueden llevar a ser cruciales en la  toma de decisiones "Éticas" o no.  Los datos son. Son los que son y dicen lo que dicen. A veces solos y de forma discreta no dicen nada. Pero correlados y cruzados pueden decir más de lo que deben. Y a veces, es imposible poner el límite justo.

Una visión simplista puede llevar a pensar que con eliminar ciertos tipos de datos vamos a hacer que el sistema informático tome la decisión de igual manera que lo hace la persona de HHRR y la de Análisis Financiero. Y aquí volvemos a meternos en otro jardín que me encanta, personalmente. Y que es una reflexión que incluso he planteado a personas a cargo de sacar la nueva LOPD en España. Dejadme que os lo explique.

Estamos acostumbrados a hablar de datos de diferentes tipos. De carácter personal. Datos médicos. Datos que parecen representar una sola cosa. Pero todos sabemos que no es así. Y es un debate que yo he explicado muchas veces. Por ejemplo, un dato como la ubicación GPS ¿dice solo dónde estás? Ya sabéis que no. Y la conferencia que di sobre You are where you are es un alegato completo a esa respuesta.


Figura 2: You are where you are

Al final, un dato como la ubicación GPS puede decir si tienes dinero, tu ideología política, tu ideología religiosa, tus hábitos alimenticios, deportivos, tu vida sexual, tu familia, tu vida personal. Siempre con un porcentaje de acierto y un margen de error. Si una persona tiene una ubicación periódica en el lugar en el que hay un centro médico puede ser que esté enfermo, que visite a amigos, que trabaje allí, o mera casualidad. Pero con el mundo del Big Data y la capacidad de analizar grandes cantidades de datos en tiempo útil, eso puede afinarse hasta grados increibles. 

Y la ubicación es lo más sencillo. Pero la forma en la que coges el teléfono, la forma en la que tocas la pantalla, la resolución con la que ves las aplicaciones, el tiempo que pasas leyendo determinados artículos, las películas que ves, las horas a las que trabajas, tu manera de escribir, la forma en la que cambias de aplicaciones, la manera en la que mueves el ratón o las webs por las que navegas pueden decir cosas de ti que no imaginas

Puede detectarse que una persona tiene una ludopatía, que está nervioso, que es republicano o demócrata, que tiene parkinson, o un problema visual, que tiene una disfuncionalidad cardiaca, etc... ¿Son los datos de monitorización de las pulsaciones de un teclado, o las resoluciones de pantalla que usan las personas en sus puestos de trabajo datos médicos? La respuesta no es muy sencilla.

De hecho, la respuesta que llegó para solucionar este problema desde la regulación fue el GDPR en Europa. Dile al usuario para qué vas a utilizar cada dato y que él decida. Una forma compleja para el ciudadano de tener que saber si lo que le están solicitando es la información que quiere dar. Por ejemplo, queremos "Utilizar los datos GPS de tu móvil y la navegación para ponerte anuncios más adecuados a tu perfil". Eso puede significar muchas cosas.

Y si analizamos la información de las empresas que quieren ser compliance pero no dar claridad total, nos encontramos con casos como el de UBER que yo comentaba en el artículo que le dediqué al escándalo de Cambridge Analytica.

El algoritmo

Y vayamos ahora a los algoritmos. Y dejadme que no hable de AI todavía, solo de un algoritmo normal. El problema del sesgo se puede producir de muchas formas. Imaginemos que los primeros resultados que salen en un buscador son de un determinado periódico con una determinada ideología. Probablemente influya positivamente en alguna ideología concreta y negativamente en otro.


Solo por eso. La teoría evolutiva hará que además se retroalimente y crezca.  Pero... ¿ha hecho algo malo el algoritmo? Ha usado datos fríos para marcar la relevancia del resultado, pero como he explicado antes, los datos fríos pueden estar dando información que está oculta al ojo menos acostumbrado.

Detectar un sesgo en un algoritmo sencillo puede ser fácil de entender. Por ejemplo imaginad que vamos a premiar con unos regalos a los empleados que se mantengan saludables. Una idea que puede parecer buena al principio porque si los trabajadores cuidan su salud habrá menos bajas, serán más productivos y le irá mejor a toda la compañía.

Imaginad que se calcula una formula de peso saludable en base a la edad, altura, peso que da un rango entre 0..1 donde 0 es no ganas puntos porque estás lejos de tu peso saludable y 1 estás perfecto. Por el medio todos los grados posibles: 0.3, 0.8, 0.9, etcétera.  Esto, que no tiene nada que ver con Inteligencia Artificial ni datos utilizados en algoritmos concretos de Machine Learning ni nada, es una muy mala idea de base.

Por supuesto, no todas las personas tenemos la misma constitución, ni por supuesto está fomentando algo que pueda ser positivo para todo el mundo. Ni está teniendo en cuenta situaciones personales por motivos personales. Como ayunos religiosos, enfermedades, metabolismos, etc... ni el impacto emocional que puede tener en las personas que no alcancen el 1. 

Y eso no tiene que ver para nada con la tecnología en sí. ¿Con qué tiene que ver?

Ética corporativa, legalidad y Valores

Lo que marca al final qué tecnología se debe hacer o no son los valores de la compañía y las personas que velan por ellos. Lo que sus ejecutivos de alto nivel deciden que quieren preservar y aquello que no quieren defender. Vender datos de clientes o no venderlos es una decisión ejecutiva y no tecnológica con fundamento de valores. Aplicar sistemas de predicción de bajo rendimiento en el futuro de trabajadores es una decisión del equipo ejecutivo, sin que tenga que ver que con la tecnología que se utilice. Puede ser un Excel o un complejo sistema de AI con un algoritmo difícil de entender.  O usar el sistema para ayudar a los trabajadores que van a entrar en low-performance en lugar de despedirlos. Marca la diferencia qué valores tenga la compañía.

Hacer la tecnología que se quiere hacer y no la que se puede hacer es una decisión que entra en los valores de la compañía. Y que son muy importantes como veis. Y en las empresas hay personas y equipos para ello. En nuestro caso tenemos a las personas de Negocio Responsable y Responsabilidad Social Corporativa que se ocupan de velar por eso. Y en cosas como la dicotomía de HIRE tenemos a los equipos de Personas que cuidan esas decisiones. Y por encima de todos ellos los departamentos Legales para velar por el cumplimiento de obligaciones y los altos órganos de gobierno como el Comité Ejecutivo y el Consejo para impulsar todos los valores de la compañía. Y esos valores son los que marcan lo que debe ser el mapa Ético de la compañía.

Como veis, en este apartado no hace falta tener muchos ingenieros. Y las personas que velan por la dirección de la compañía tienen perfiles de todo tipo. De negocio, de comunicación, de ingeniería, de finanzas, etcétera. Son personas - muchas - que defienden los valores de una empresa independientemente de la tecnología. De hecho, muchas de las decisiones que hay que tomar en una compañía que tiene que ver con ética y valores de la empresa, no tiene nada que ver con tecnología. 

Y los valores de la compañía se llevan en todo lo que hace la empresa. En las campañas de marketing, en los anuncios, en los textos de una web, en los textos de las aplicaciones móviles o en los textos que devuelve un chatbot. Los valores de una compañía están en todos los rincones. Y los llevamos más allá de nuestras fronteras jurídicas o tecnológicas. Y en la parte del mundo digital, se declinan de varias formas. Y la primera de ella es un Manifiesto Digital de los valores que creemos deben defenderse en este nuevo mundo que crece y cambia día a día.

Figura 4: Manifiesto Digital de Telefónica

Una empresa debe operar dentro de los principios legales de un Estado. Si este Estado está dentro de países que cumplen los derechos humanos es difícil justificar éticamente que una empresa se salte la ley. Pero también debe fomentar el debate público cuando crea que algo no es bueno para la sociedad. Y es duro a veces. Porque puede estar encontrado contra la ética personal de cada alguna de las personas que representan a las personas. Pero las empresas no deben estar por encima de los Estados. Yo ha escribí de este debate hace ya unos años, en un par de artículos que llamé "A los CEO de las multinacionales no los elige el pueblo" y "El derecho a la privadad en mi lista de derechos".

Dicho eso, a lo largo de mi vida trabajando en ciberseguridad - y con la malinterpretación del término hacker - yo he tenido que tomar muchas decisiones morales. Decisiones que tienen que ver con mi visión personal del mundo y de la sociedad, con la educación que he recibido y con los valores personales que he absorbido de las personas a las que admiro.  Y por eso cuando me han pedido cosas que no encajaban con mis valores personales he actuado acorde a ellos. Casos como cuando me pidieron ayudar a hacer un Man in the Middle en países, o cuando me piden esas cosas las personas buscan cibercriminales y no hackers.

Como cualquier otro ser humano - o empresa - tomo decisiones teniendo unos valores. Aunque me encantaría, por desgracia no siempre consigo que mis acciones sean acordes con mis valores. Y muchas veces me equivoco. Pero es tomando como referencia mis valores lo que me hace decidir si acierto o no. Incluso cumpliendo la ley a veces me equivoco y tomo decisiones equivocadas con mis principios de ética y moralidad que me dañan por dentro. Es lo que tiene ser humano. Es lo mismo que sucede con los "hacktivistas", donde gente como Edward Snowden o Bradley Manning tomaron una decisión ética basada en sus valores que les llevó a incumplir la ley de su país, llegando a sufrir condenas muy duras.

Como empleado de una compañía, yo tengo que defender los valores de esta compañía. Y si no los sintiera buenos y como míos, tal vez tendría que llegar hasta a abandonar el trabajo. Una vez, cuando aún era CEO de ElevenPaths, llegó una petición desde un cliente que quería que le desarrolláramos una arma de ciberseguridad con capacidades ofensivas. En este caso se trataba de montar un producto que pudiera usarse para atacar servidores. No me gustaba. Por mucho que pudiera entender la motivación del cliente, no quería crear tecnología ofensiva en ElevenPaths, así que dije inicialmente que no, y luego pregunté a mis compañeros para confirmar que esto no iba con los valores que queríamos defender.

Figura 5: CyberSecurity Tech Accord

Años después, la compañía decidió confirmar públicamente este tipo de decisiones por medio de la adhesión al CyberSecurity Tech Accord donde defendemos, además de otros valores, justo este del que os estoy hablando.

Inteligencia Artificial y Ética

Llegado a esta parte de la disertación, quiero llegar a la parte de la Inteligencia Artificial, que es la que ha generado este Hype en el mundo de la Ética. Y digo Hype, porque es verdad que la llegada de la IA, con la evolución de los algoritmos y técnicas de Machine Learning que han pasado desde los primeros autómatas y sistemas expertos basados en árboles de decisión, hasta los modernos algoritmos de Deep Learning basados en Redes Neuronales y las modernas GANs que han abierto tantas posibilidades.


Y puede ser bueno o malo, en función de lo que se construya. Por supuesto, una empresa como la nuestra no va a hacer ningún sistema para localizar personas con reconocimiento facial atentando contra su privacidad - tanto si se usan los modernos sistemas de AI que se usan en Visión Artificial como si se usa un viejo algoritmo de reconocimiento facia basados en reglas con el conocimiento de los expertos -. No lo va a hacer, porque eso atenta contra nuestros valores y todos los ejecutivos de la casa lo tienen claro, además de que tenemos toma de decisiones con responsabilidades compartimentada para evitar justo eso.

Es verdad que la AI ha abierto nuevas posibilidades, pero son los valores los que controlan la creación de tecnología en una empresa. ¿Los textos de un chatbot? Igual que los textos de una web. ¿La privacidad de la voz al hablar con un asistente digital? Igual que cuando se respeta en una llamada telefónica. ¿Las contestaciones que da un asistente digital? De igual forma que se transmite la forma de contestar a un compañero que habla con un cliente en un Contact Center o una tienda. Es decir, que sea AI, o cualquier otro proyecto tecnológico o no, está basado en los controles de valores de compañía que tenemos.

La AI se puede usar para cosas tan complejas como predecir el "churn" de un cliente de manera más ajustada que ninguna otra tecnología o predecir la calidad del aire de una ciudad una semana vista, pero también se puede usar para cosas tan sencillas como para reconocer un comando de voz para cambiar un canal, clasificar las fotos en tu smartphone o reconocer un texto a mano alzada. Es solo tecnología.

Por supuesto que la tecnología puede usarse para llevarnos a escenarios catastrofistas, pero los valores de una compañía en concreto, y los de una sociedad en su totalidad, deben decidir - sea AI u otra tecnología no catalogada como AI  - para que se quieren utilizar los avances del conocimiento. Y hay cosas maravillosas como os conté en el artículo de "La AI que no quería morir, que quería matar y que no sabía amar". 

Ingenieros & Hackers

Y para terminar todo esta reflexión sobre el tema, llego al punto que quería debatir de verdad. Todo lo anterior lo puedes tomar como una introducción al asunto. Y es... ¿cuál es el rol de los Ingenieros (y de los hackers) dentro de la Ética de una empresa cuando hablamos de AI? Pues al final es uno de los más importantes, especialmente cuando hablamos de esto, de algoritmos complejos de AI.

Como he dicho, usar la AI para cosas "evidentemente" contrarias a los valores de la empresa, es lo mismo que hacer tecnología - use AI o no - contraria a los valores de la empresa. Son los equipos directivos, de Responsabilidad Social Corporativa, de Negocio Responsable, de Personas (HHRR), Legales, y los órganos de gobierno como el Comité Ejecutivo, el Consejo y sus comisiones de control los que deberán marcar las pautas con los valores de la compañía para saber si se debe hacer un proyecto o no. E incluso se declina en una declaración de principios éticos.

Figura 7: Principios Éticos de la AI en Telefónica

¿Los textos de un chatbot? Si has hecho tecnología alguna vez en una empresa, sabras que son los equipos de comunicación, marca, user-research, lingüistas y user experience los que le dicen a los ingenieros qué debe decir en la respuesta de una intent reconocida por el motor de bots. No, los ingenieros (y los hackers) son fundamentales para otra cosa.

Son fundamentales porque son los que conocen bien el funcionamiento de la tecnología. Los ingenieros de datos, los ingenieros de ciencia de datos, los ingenieros de software, los ingenieros de AI y los hackers, los que levantan la bandera para detectar esas relaciones ocultas entre los datos. Las implicaciones que tiene un algoritmo evolutivo frente al un sistema basado en un árbol de decisión. Los que pueden decir que la evolución del modelo puede llevar a una situación de degeneración, o los que pueden entender realmente la implicación de dos AI enfrentadas. Esos hackers que pueden llevar cualquier tecnología al límite.

Si no involucras a tus ingenieros y hackers en detectar esas situaciones en las que un HIRE y un INVIERTE pueden llevar a una evolución no deseada. A detectar los Side-channels de los datos y algoritmos donde la localización en un sistema pueda llevar a un atentado contra la privacidad de las personas, a saber cuándo un sistema de GANs puede crear un sistema se salte todos los controles o donde un sistema de Human Behaviour Analytics puede ser nocivo para los empleados, vas mal. 

Como ves, todos los roles y perfiles de una organización tienen su función en el comportamiento ético de una empresa, pero los ingenieros tienen uno muy especial cuando hablas de Datos, Big Data, Machine Learning e AI. No para definir los valores, sino para garantizar su cumplimiento.

Saludos Malignos!

          Associate / Full Professor - Head, Division of Breast Imaging -1800994 - Sunnybrook Health Sciences Centre - Toronto, ON      Cache   Translate Page      
Anne Martel, another SRI scientist has created a research program in machine/deep learning with applications in breast cancer....
From Indeed - Mon, 14 Jan 2019 16:14:21 GMT - View all Toronto, ON jobs
          Scientifique en apprentissage profond / Deep Learning Scientist - Huawei Canada - Montréal, QC      Cache   Translate Page      
Located in Hong Kong, Shenzhen, Beijing, London, Paris, Montreal, Toronto and Edmonton, Noah’s Ark Lab is the flagship AI research lab of Huawei Technologies....
From Huawei Canada - Thu, 11 Oct 2018 23:46:40 GMT - View all Montréal, QC jobs
          Sr Principal Cognitive Sftwr - Explainable AI      Cache   Translate Page      
Northrop Grumman Mission Systems in Beavercreek, Ohio sector is seeking a Sr Principal Cognitive Sftwr who will be an integral part of a Research, Technology Transition and Systems development Team that performs deep learning on problems ranging from Machine Translation, Automated Speech Recognition, Speech Synthesis, Image Processing, Cyber Solutions and Remote Sensing Applications. The selected applicant will have the opportunity to advance the state of the art for the intelligence production and analysis. The applicant will also have the opportunity to perform independent research and development. Conducts research in artificial intelligence (AI)/machine learning, and prototypes advanced machine learning and deep learning techniques to stretch the capability of autonomous systems research and development programs. Defines, develops, and delivers novel mathematical and statistical modeling and algorithm development to tackle the challenges of prediction, optimization, and classification.
          Sr Principal Cognitive Sftwr - Explainable AI      Cache   Translate Page      
Northrop Grumman Mission Systems in Beavercreek, Ohio sector is seeking a Sr Principal Cognitive Sftwr who will be an integral part of a Research, Technology Transition and Systems development Team that performs deep learning on problems ranging from Machine Translation, Automated Speech Recognition, Speech Synthesis, Image Processing, Cyber Solutions and Remote Sensing Applications. The selected applicant will have the opportunity to advance the state of the art for the intelligence production and analysis. The applicant will also have the opportunity to perform independent research and development. Conducts research in artificial intelligence (AI)/machine learning, and prototypes advanced machine learning and deep learning techniques to stretch the capability of autonomous systems research and development programs. Defines, develops, and delivers novel mathematical and statistical modeling and algorithm development to tackle the challenges of prediction, optimization, and classification.


Next Page: 10000

Site Map 2018_01_14
Site Map 2018_01_15
Site Map 2018_01_16
Site Map 2018_01_17
Site Map 2018_01_18
Site Map 2018_01_19
Site Map 2018_01_20
Site Map 2018_01_21
Site Map 2018_01_22
Site Map 2018_01_23
Site Map 2018_01_24
Site Map 2018_01_25
Site Map 2018_01_26
Site Map 2018_01_27
Site Map 2018_01_28
Site Map 2018_01_29
Site Map 2018_01_30
Site Map 2018_01_31
Site Map 2018_02_01
Site Map 2018_02_02
Site Map 2018_02_03
Site Map 2018_02_04
Site Map 2018_02_05
Site Map 2018_02_06
Site Map 2018_02_07
Site Map 2018_02_08
Site Map 2018_02_09
Site Map 2018_02_10
Site Map 2018_02_11
Site Map 2018_02_12
Site Map 2018_02_13
Site Map 2018_02_14
Site Map 2018_02_15
Site Map 2018_02_15
Site Map 2018_02_16
Site Map 2018_02_17
Site Map 2018_02_18
Site Map 2018_02_19
Site Map 2018_02_20
Site Map 2018_02_21
Site Map 2018_02_22
Site Map 2018_02_23
Site Map 2018_02_24
Site Map 2018_02_25
Site Map 2018_02_26
Site Map 2018_02_27
Site Map 2018_02_28
Site Map 2018_03_01
Site Map 2018_03_02
Site Map 2018_03_03
Site Map 2018_03_04
Site Map 2018_03_05
Site Map 2018_03_06
Site Map 2018_03_07
Site Map 2018_03_08
Site Map 2018_03_09
Site Map 2018_03_10
Site Map 2018_03_11
Site Map 2018_03_12
Site Map 2018_03_13
Site Map 2018_03_14
Site Map 2018_03_15
Site Map 2018_03_16
Site Map 2018_03_17
Site Map 2018_03_18
Site Map 2018_03_19
Site Map 2018_03_20
Site Map 2018_03_21
Site Map 2018_03_22
Site Map 2018_03_23
Site Map 2018_03_24
Site Map 2018_03_25
Site Map 2018_03_26
Site Map 2018_03_27
Site Map 2018_03_28
Site Map 2018_03_29
Site Map 2018_03_30
Site Map 2018_03_31
Site Map 2018_04_01
Site Map 2018_04_02
Site Map 2018_04_03
Site Map 2018_04_04
Site Map 2018_04_05
Site Map 2018_04_06
Site Map 2018_04_07
Site Map 2018_04_08
Site Map 2018_04_09
Site Map 2018_04_10
Site Map 2018_04_11
Site Map 2018_04_12
Site Map 2018_04_13
Site Map 2018_04_14
Site Map 2018_04_15
Site Map 2018_04_16
Site Map 2018_04_17
Site Map 2018_04_18
Site Map 2018_04_19
Site Map 2018_04_20
Site Map 2018_04_21
Site Map 2018_04_22
Site Map 2018_04_23
Site Map 2018_04_24
Site Map 2018_04_25
Site Map 2018_04_26
Site Map 2018_04_27
Site Map 2018_04_28
Site Map 2018_04_29
Site Map 2018_04_30
Site Map 2018_05_01
Site Map 2018_05_02
Site Map 2018_05_03
Site Map 2018_05_04
Site Map 2018_05_05
Site Map 2018_05_06
Site Map 2018_05_07
Site Map 2018_05_08
Site Map 2018_05_09
Site Map 2018_05_15
Site Map 2018_05_16
Site Map 2018_05_17
Site Map 2018_05_18
Site Map 2018_05_19
Site Map 2018_05_20
Site Map 2018_05_21
Site Map 2018_05_22
Site Map 2018_05_23
Site Map 2018_05_24
Site Map 2018_05_25
Site Map 2018_05_26
Site Map 2018_05_27
Site Map 2018_05_28
Site Map 2018_05_29
Site Map 2018_05_30
Site Map 2018_05_31
Site Map 2018_06_01
Site Map 2018_06_02
Site Map 2018_06_03
Site Map 2018_06_04
Site Map 2018_06_05
Site Map 2018_06_06
Site Map 2018_06_07
Site Map 2018_06_08
Site Map 2018_06_09
Site Map 2018_06_10
Site Map 2018_06_11
Site Map 2018_06_12
Site Map 2018_06_13
Site Map 2018_06_14
Site Map 2018_06_15
Site Map 2018_06_16
Site Map 2018_06_17
Site Map 2018_06_18
Site Map 2018_06_19
Site Map 2018_06_20
Site Map 2018_06_21
Site Map 2018_06_22
Site Map 2018_06_23
Site Map 2018_06_24
Site Map 2018_06_25
Site Map 2018_06_26
Site Map 2018_06_27
Site Map 2018_06_28
Site Map 2018_06_29
Site Map 2018_06_30
Site Map 2018_07_01
Site Map 2018_07_02
Site Map 2018_07_03
Site Map 2018_07_04
Site Map 2018_07_05
Site Map 2018_07_06
Site Map 2018_07_07
Site Map 2018_07_08
Site Map 2018_07_09
Site Map 2018_07_10
Site Map 2018_07_11
Site Map 2018_07_12
Site Map 2018_07_13
Site Map 2018_07_14
Site Map 2018_07_15
Site Map 2018_07_16
Site Map 2018_07_17
Site Map 2018_07_18
Site Map 2018_07_19
Site Map 2018_07_20
Site Map 2018_07_21
Site Map 2018_07_22
Site Map 2018_07_23
Site Map 2018_07_24
Site Map 2018_07_25
Site Map 2018_07_26
Site Map 2018_07_27
Site Map 2018_07_28
Site Map 2018_07_29
Site Map 2018_07_30
Site Map 2018_07_31
Site Map 2018_08_01
Site Map 2018_08_02
Site Map 2018_08_03
Site Map 2018_08_04
Site Map 2018_08_05
Site Map 2018_08_06
Site Map 2018_08_07
Site Map 2018_08_08
Site Map 2018_08_09
Site Map 2018_08_10
Site Map 2018_08_11
Site Map 2018_08_12
Site Map 2018_08_13
Site Map 2018_08_15
Site Map 2018_08_16
Site Map 2018_08_17
Site Map 2018_08_18
Site Map 2018_08_19
Site Map 2018_08_20
Site Map 2018_08_21
Site Map 2018_08_22
Site Map 2018_08_23
Site Map 2018_08_24
Site Map 2018_08_25
Site Map 2018_08_26
Site Map 2018_08_27
Site Map 2018_08_28
Site Map 2018_08_29
Site Map 2018_08_30
Site Map 2018_08_31
Site Map 2018_09_01
Site Map 2018_09_02
Site Map 2018_09_03
Site Map 2018_09_04
Site Map 2018_09_05
Site Map 2018_09_06
Site Map 2018_09_07
Site Map 2018_09_08
Site Map 2018_09_09
Site Map 2018_09_10
Site Map 2018_09_11
Site Map 2018_09_12
Site Map 2018_09_13
Site Map 2018_09_14
Site Map 2018_09_15
Site Map 2018_09_16
Site Map 2018_09_17
Site Map 2018_09_18
Site Map 2018_09_19
Site Map 2018_09_20
Site Map 2018_09_21
Site Map 2018_09_23
Site Map 2018_09_24
Site Map 2018_09_25
Site Map 2018_09_26
Site Map 2018_09_27
Site Map 2018_09_28
Site Map 2018_09_29
Site Map 2018_09_30
Site Map 2018_10_01
Site Map 2018_10_02
Site Map 2018_10_03
Site Map 2018_10_04
Site Map 2018_10_05
Site Map 2018_10_06
Site Map 2018_10_07
Site Map 2018_10_08
Site Map 2018_10_09
Site Map 2018_10_10
Site Map 2018_10_11
Site Map 2018_10_12
Site Map 2018_10_13
Site Map 2018_10_14
Site Map 2018_10_15
Site Map 2018_10_16
Site Map 2018_10_17
Site Map 2018_10_18
Site Map 2018_10_19
Site Map 2018_10_20
Site Map 2018_10_21
Site Map 2018_10_22
Site Map 2018_10_23
Site Map 2018_10_24
Site Map 2018_10_25
Site Map 2018_10_26
Site Map 2018_10_27
Site Map 2018_10_28
Site Map 2018_10_29
Site Map 2018_10_30
Site Map 2018_10_31
Site Map 2018_11_01
Site Map 2018_11_02
Site Map 2018_11_03
Site Map 2018_11_04
Site Map 2018_11_05
Site Map 2018_11_06
Site Map 2018_11_07
Site Map 2018_11_08
Site Map 2018_11_09
Site Map 2018_11_10
Site Map 2018_11_11
Site Map 2018_11_12
Site Map 2018_11_13
Site Map 2018_11_14
Site Map 2018_11_15
Site Map 2018_11_16
Site Map 2018_11_17
Site Map 2018_11_18
Site Map 2018_11_19
Site Map 2018_11_20
Site Map 2018_11_21
Site Map 2018_11_22
Site Map 2018_11_23
Site Map 2018_11_24
Site Map 2018_11_25
Site Map 2018_11_26
Site Map 2018_11_27
Site Map 2018_11_28
Site Map 2018_11_29
Site Map 2018_11_30
Site Map 2018_12_01
Site Map 2018_12_02
Site Map 2018_12_03
Site Map 2018_12_04
Site Map 2018_12_05
Site Map 2018_12_06
Site Map 2018_12_07
Site Map 2018_12_08
Site Map 2018_12_09
Site Map 2018_12_10
Site Map 2018_12_11
Site Map 2018_12_12
Site Map 2018_12_13
Site Map 2018_12_14
Site Map 2018_12_15
Site Map 2018_12_16
Site Map 2018_12_17
Site Map 2018_12_18
Site Map 2018_12_19
Site Map 2018_12_20
Site Map 2018_12_21
Site Map 2018_12_22
Site Map 2018_12_23
Site Map 2018_12_24
Site Map 2018_12_25
Site Map 2018_12_26
Site Map 2018_12_27
Site Map 2018_12_28
Site Map 2018_12_29
Site Map 2018_12_30
Site Map 2018_12_31
Site Map 2019_01_01
Site Map 2019_01_02
Site Map 2019_01_03
Site Map 2019_01_04
Site Map 2019_01_06
Site Map 2019_01_07
Site Map 2019_01_08
Site Map 2019_01_09
Site Map 2019_01_11
Site Map 2019_01_12
Site Map 2019_01_13
Site Map 2019_01_14
Site Map 2019_01_15
Site Map 2019_01_16
Site Map 2019_01_17
Site Map 2019_01_18
Site Map 2019_01_19
Site Map 2019_01_20
Site Map 2019_01_21
Site Map 2019_01_22
Site Map 2019_01_23
Site Map 2019_01_24
Site Map 2019_01_25
Site Map 2019_01_26
Site Map 2019_01_27
Site Map 2019_01_28
Site Map 2019_01_29
Site Map 2019_01_30
Site Map 2019_01_31
Site Map 2019_02_01
Site Map 2019_02_02
Site Map 2019_02_03
Site Map 2019_02_04
Site Map 2019_02_05
Site Map 2019_02_06
Site Map 2019_02_07
Site Map 2019_02_08
Site Map 2019_02_09
Site Map 2019_02_10