Next Page: 10000

           Comment on Ilmastoskeptikko jo kolme vuosikymmentä sitten by Boris Winterhalter       Cache   Translate Page      
Toki tuo on käynyt usein mielessäni, mutta joka kerta, kun olen tarkemmin paneutunut IPCC:n uudempaan raporttiin, niin huomaan siinä olevien argumnttien olevan riittämättömiä, suorastaan vääristeleviä, jotta muuttaisin mielipidettäni. Minä voisin sinulta kysyä samoin, miksi kuljet IPCC:n yesyes-miesten kelkassa, aivan kuten aikoinaan kuningaskunnassa, jossa kaikki ihastelivat kuninkaan "uusia vaatteita", kunnes pikku poika ihmetteli ääneen, ettei kuninkaalla ollut vaatteita päällä. Muista, että meitä ilmastohömppään kielteisesti suhtautuvia tutkijoita on todella paljon, mutta heillä ei ole "sensuurin" takia åääsyä ns eturivin julkaisuihin (kuten Nature ja Science). Siksi meikäläisten tutkimuksia julkasitaan runsaasti liberaaleimmissa julkaisusarjossa ja myös esim, Arxiv.org: kaltaisissa nettijulkaisuissa, esim https://arxiv.org/abs/1708.08248 tai https://www.sciencedaily.com/releases/2017/12/171219091320.htm Sellaisiin sinä et ilmeisesti uskalla kajota.
          Депрессию выявят через смартфон      Cache   Translate Page      
Американские ученые из Стэнфордского университета создали систему, с помощью которой люди самостоятельно смогут определять у себя психическое расстройство. Как пишет arXiv, диагностировать депрессию предлагается через обычный смартфон. Исследователи использовали для создания автоматического метода диагностики депрессии открытый датасет DAIC-WOZ, который содержит интервью со 189 людьми, как здоровых так и с психическими заболеваниями. Каждое видео представлено в виде трехмерной модели человеческого лица во время разговора и спектрограммы его речи. На основе записей ученые выделили особенности речи и выражения лица людей с наличием депрессии. Для обучения системы авторы использовали сверточную нейросеть, а в качестве данных аудиозаписи интервью. При анализе интервью людей с депрессией нейросеть научилась определять симптомы расстройства по некоторым признакам, в частности – запинкам в речи. По данным ученых, система сможет определить депрессию с точностью до 85 процентов. Кроме того, предложенный ими метод может быть применен для диагностики с помощью обычного смартфона и записанных через него интервью. Добавим, по статистике ВОЗ от депрессии во всем мире страдают около 300 млн человек.
          Portsmouth researchers make vital contribution to new gravitational wave discoveries - Space Daily      Cache   Translate Page      

The Nation

Portsmouth researchers make vital contribution to new gravitational wave discoveries
Space Daily
Researchers from the University of Portsmouth have made vital contributions to the observations of four new gravitational waves, which were announced this weekend (1 December). The new results are from the National Science Foundation's LIGO (Laser ...
Four New Gravitational Wave Detections Announced, Including Most Massive Event YetDiscover Magazine (blog)
LSC/Virgo Census - My Ligo - LIGO Scientific CollaborationMy Ligo - LIGO Scientific Collaboration
[1811.12907] GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and ...arXiv
Advanced Virgo - VIRGO Collaboration
all 138 news articles »

          Могут ли у лун быть свои луны?      Cache   Translate Page      

Наша Луна не имеет собственного естественного спутника. Но возможно ли наличие лун у спутников других планет. И можно ли в таком случае называть такие луны лунами?

 


Наша Луна, Каллисто у Юпитера и спутники Сатурна Титан и Япет — только эти луны в нашей Солнечной системе теоретически могли бы иметь собственные естественные спутники. Но о таких сопровождающих до сих пор не известно ничего. Если же такая астрономическая сенсация в непосредственной близости от нас обнаружена не будет, то наверняка астрономы обратят свои взоры на еще не открытые экзолуны, в надежде у них открыть «луны у лун». То, что такие космические «отношения» не стоит исключать, подтвердили Яна Коллмайер из обсерватории Карнеги в Пасадене и Син Раймонд из университета Бордо в статье на arXiv. Для этого соответствующая луна и ее спутник — которого можно было бы называть «сублуной» или «луной луны» -должны соответствовать определенным предпосылкам. Исследователи считают, что соответствующее небесное тело должно находиться настолько близко к своей луне, чтобы она не могла быть притянутой соседней планетой, а гравитация должна связывать луну с собственным спутником. При этом луна луны не должна приближаться к основной луне слишком близко, ибо в противном случае она может быть разорвана гравитационными силами основной луны и планеты или просто выброшена с орбиты своей луны.

Одновременно с этим луны должны иметь достаточно сильную гравитацию, что достижимо, начиная с определенной массы космического тела. К тому же они должны удерживаться на достаточном удалении от своей центральной планеты, чтобы сублуна могла без проблем обращаться вокруг своей луны. В нашей Солнечной системе такая теоретическая возможность существует лишь в отношении четырех названных в начале статьи лун — все остальные для такой «конструкции» либо слишком малы, либо находятся слишком близко к своим планетам. И обязательно должна выполняться еще одна важная предпосылка. Сублуна должна с правильной скоростью оставаться в зоне влияния своей основной луны, дабы продолжать обращаться на орбите вокруг основного спутника планеты, а не сорваться с этой орбиты на орбиту обращения вокруг самой планеты. «Мы можем с довольно большой уверенностью исходить из того, что возле Сатурна или Юпитера не имеется еще неизвестных достаточных по размерам лун», — говорит Мишель Баннистер из Королевского университета Белфаста в интервью изданию NewScientist. Но если бы наша земная Луна имела бы свою сублуну, то она по причине медленного движения нашего спутника была бы просто вышвырнута со своей орбиты прочь от Земли.

Так что желающим обнаружить луны лун, хочешь не хочешь, придется обращать взоры к лунам экзопланет. И все же: первый кандидат на роль экзолуны, вероятно, уже открыт. Причем по размерам он может быть сопоставим с Нептуном. Но это пока только предположение. К сожалению, по сравнению с экзопланетами искать и подтверждать такие экзолуны при современном уровне техники представляется делом почти безнадежным. Так что даже самым нетерпеливым придется еще «немножко» подождать.

http://sci-hit.com/2018/12/mogut-li-u-lun-byt-svoi-luny.html


          A Teoria da Relatividade Geral de Einstein passa em mais um teste no espaço sideral      Cache   Translate Page      

A gravidade é estranha e difícil de estudar. Ela se move através do espaço como uma onda, mais ou menos como a luz faz. Mas essas ondas são sutis e difíceis de detectarem. Elas ocorrem em quantidades mensuráveis ​​somente após eventos massivos, como a colisão de buracos negros. A humanidade não localizou sua primeira onda gravitacional até 2015. Então, em 2017,  astrônomos detectaram pela primeira vez as ondas gravitacionais e a luz de um único evento: uma colisão de estrelas de nêutrons. Agora, os pesquisadores estão usando dados desse evento para confirmar alguns fatos básicos sobre o Universo.


Em um artigo enviado em primeiro de novembro para o servidor pre-impressão arXiv, os pesquisadores anunciaram que não encontraram nenhuma evidência de "vazamento gravitacional". Os cientistas pensaram que era possível que a gravidade penetrasse em altas dimensões (aquelas além das quatro que os humanos experimentam - cima/baixo, lado a lado, frente/trás, tempo), mesmo que a luz não o faça. Se isso acontecesse, a força da gravidade perderia mais energia do que a luz ao passar pelo espaço. Mas comparar a luz e as ondas gravitacionais daquela colisão de estrelas de nêutrons mostrou que isso não estava acontecendo.


Toda a gravidade de nossa dimensão parece estar exatamente onde está, como Albert Einstein previu em sua teoria da relatividade geral.

Os pesquisadores do novo estudo também analisaram ondas gravitacionais para ver se o gráviton - a partícula teórica que carrega a gravidade - poderia ter massa, como outras partículas têm. Se houvesse algo como "gravitação maciça", as ondas gravitacionais também teriam massa, e se essas ondas tivessem massa, elas exibiriam sinais, ao contrário das partículas de luz, que não têm massa. Isso também seria uma violação da relatividade geral. Mas, novamente, isso não aconteceu.

No geral, os pesquisadores descobriram que as teorias da gravidade de Einstein permanecem basicamente intactas. Algum dia, isso pode mudar. Mas ainda não aconteceu, mesmo depois que duas estrelas de nêutrons se chocarem.

Via: Livescience

          Whats new on arXiv      Cache   Translate Page      
Making Classification Competitive for Deep Metric Learning Deep metric learning aims to learn a function mapping image pixels to embedding …

Continue reading


          Votre smartphone pourra bientôt diagnostiquer votre dépression      Cache   Translate Page      
Selon une récente étude de l'université de Stanford en Californie, des universitaires sont parvenus à démontrer que des logiciels analysant le visage et la voix pouvaient déceler des symptômes de dépression. Cette nouvelle avancée techno-médicale a pu être rendue possible grâce à l'amélioration constante de l'intelligence artificielle embarquée dans les téléphones. La recherche a été menée par Fei-Fei Li, un éminent expert en IA, transfuge de Google. ... Lire la suite

          Machine learning masters the fingerprint to fool biometric systems      Cache   Translate Page      
12/5/18
Biometrics
Enable IntenseDebate Comments: 
Enable IntenseDebate Comments

Fingerprint authentication systems are a widely trusted, ubiquitous form of biometric authentication, deployed on billions of smartphones and other devices worldwide. Yet a new study from Michigan State University and New York University reveals a surprising level of vulnerability in these systems.

read more


          Климат Марса: назад в будущее      Cache   Translate Page      
Где–то на орбите Марса спустя 50 миллионов лет...

До недавнего времени климат планет Солнечной системы считался практически неизменным: только в 1920 году Милутином Миланковичем была предложена идея что изменения в эксцентриситете орбиты, наклон оси вращения Земли и её прецессии вызывают в сумме циклические изменения климата (на самом деле подобные предположения высказывались и до него, но недостаток данных не позволял правильно сформулировать это правило раньше). Эту закономерность так и назвали в честь её автора — циклами Миланковича. В 1950 году Дирком Брауэром и Адрианусом Ван Воеркамом было предположено что эксцентриситет марсианской орбиты тоже меняется со временем, ведя к изменениям его климата. Но на тот момент подтвердить или опровергнуть это было невозможно — до пролёта Марса первым земным зондом Маринер–4 оставалось ещё 15 лет.

https://www.youtube.com/watch?v=gOFbnS4shpg

Благодаря моей хорошей знакомой Диляре Садриевой, вы можете посмотреть эту статью в формате видеоролика.

Однако даже первые пролётные миссии передавали снимки слишком низкого качества, чтобы приоткрыть завесу тайны над этим вопросом. Но уже Маринеру–9 (впервые среди земных зондов вышедшему на марсианскую орбиту и проработавшем на ней с 14 ноября 1971 года по 27 октября 1972–го) удалось передать более 7 тысяч снимков приличного качества с разрешением в 100–1000 метров на пиксель. Для поклонников «Аэлиты» Алексея Толстого и «Войны миров» Герберта Уэллса новости оказались неутешительными: открытые Джованни Скиапарелли каналы на Марсе оказались всего лишь оптической иллюзией, а сам Марс предстал человечеству безжизненной пустыней. Температурные перепады на планете составляли от –143°C на полюсах зимой до +35°C в солнечный день на экваторе летом, а атмосферное давление на большей части планеты было столь низким, что водяной лёд превращался в пар и обратно минуя жидкую фазу.

Первые следы непостоянства марсианского климата полученные «Маринером–9»: на снимке отчётливо видна слоистая структура полярных шапок идущая от правого верхнего угла снимка к центру его нижней части.

Однако были и хорошие новости: аппарату удалось заснять больше 70% марсианской поверхности, включая полярные шапки. На них почти не наблюдалось кратеров, что свидетельствовало об их молодом возрасте (его оценили в 20 миллионов лет). Также повсеместно, начиная от 80 параллели и до самых полюсов, фиксировалась слоистая структура — это означало что полярные шапки Марса не только являются весьма молодыми образованиями, но ещё и периодически менялись в этот период. Теория об изменчивости марсианского климата начала подтверждаться.

Первые симуляции давали изменения эксцентриситета в диапазоне 0,004–0,141, что почти совпало с современными оценками, составляющими 0–0,16. Текущее значение эксцентриситета для Марса оценивается в 0,0934 — это всё равно весьма большое значение по сравнению с земными 0,0167 и оно уступает только Меркурию. Именно на основании наблюдений Тихо Браге движения Марса Иоганн Кеплер смог прийти к выводу о том, что орбиты планет являются эллиптическими, а не круговыми, что в дальнейшем позволило ему составить три своих знаменитых закона.

Цикличность изменений эксцентриситета также верно определили двумя периодами в 95 тысяч и 2 миллиона лет (хотя из–за сложностей в измерении скорости осаждения пород в полярных шапках Марса погрешности оценили в целых два порядка величины). А вот изменения в наклоне орбиты были оценены неверно: из–за преуменьшения влияния прецессии на этот параметр, первые расчёты исследователей давали только 15–35° вместо современных 0–80°.

Анимация прецессии оси вращения Земли. У Марса она происходит в обратном направлении.

Несмотря на то что Марс весит почти в 10 раз меньше Земли, его циклы занимают намного больше времени. Для Земли цикл прецессии занимает 25800 лет, в то время как для Марса это целых 56600 лет (скорость прецессии составляет 50,3 угловых секунд для Земли и 8,26 угловых секунд для Марса соответственно). Цикл изменения наклона оси у Земли составляет 41 тысячу лет, а у Марса — 124 тысячи. Прецессия оси вращения планеты ведёт к интересным эффектам: связанное с ней постепенное изменение оси вращения планеты приводит к тому, что звание «полярной» звезды со временем переходит от одной из них к другой. Также вместе с этим постепенно «дрейфует» и начало времён года: на Земле они смещаются назад на 1 день каждые 70,5 лет, а у Марса они наоборот смещаются на 1 день вперёд каждые 83,3 года. Скорость изменений в данном случае почти совпадают из–за того, что сам марсианский год в 1,8 раза дольше земного.

Эволюция южной полярной шапки по снимкам «Марс Глобал Сервейор».

Из–за высокого эксцентриситета марсианской орбиты, совпадающим в афелии (самой удалённой от Солнца точки орбиты) с зимой в южном полушарии, приводит к тому что климат в этом полушарии является более суровым, а южная полярная шапка значительно превосходит северную в размерах. Из других интересных особенностей: продолжительность суток на Марсе на 37,4 минуты дольше земных, но дальше отрыв будет сокращаться, так как замедление вращения Марса происходит со скоростью на 3 порядка меньше чем у Земли, что связано с малой массой двух спутников Марса по сравнению с нашей Луной.

1001 симуляция изменений наклона оси вращения Марса.

В 1989 году Ласкаром было установлено что параметры планет земной группы изменяются хаотично (в основном из–за влияния также хаотически движущихся астероидов Веста и Церера, на которые влияют объекты Пояса астероидов). Это приводит к тому что точно определить изменения наклона оси и эксцентриситета Марса на период более 10 миллионов лет оказывается невозможно (этот период называют временем Ляпунова), а на период более 50 миллионов лет становится невозможно с большей или меньшей точностью определить даже статистическое распределение их значений (для Земли эти интервалы составляют 50 и 250 миллионов лет соответственно). Но на периоды в пределах 10 миллионов лет характеристики орбит всех планет Солнечной системы возможно определить с достаточно высокой точностью.

Исследования этих показателей для других планет тоже дали весьма интересные результаты: при том что параметры орбит планет–гигантов практически не меняются, у Марса и Меркурия их эксцентриситеты колебались в весьма широких пределах. А для Меркурия они и вовсе были столь велики, что могли на интервалах в миллиарды лет привести к тому что он мог быть выброшен из Солнечной системы при его сближении с Венерой (такая вероятность была в прошлом и сохраняется в будущем). Это также может позволить нам по–другому взглянуть на парадокс Ферми (проблему того почему мы не находим следы жизни у других звёзд), так как для зарождения жизни на планете оказывается что ей не только нужно сформироваться в обитаемой зоне у своей звезды, но при этом ещё и оказаться в квазистабильном состоянии с другими планетами, чтобы из неё не выпасть.

Но вернёмся к Марсу. По оценкам изначальная атмосфера Марса имела давление в 6 раз больше текущего земного, но в результате поздней тяжёлой бомбардировки астероидами и кометами (случившейся 3,8 миллиарда лет назад) Марс потерял большую её часть сохранив давление в 0,5–1 земную атмосферу (500–1000 мбар). Но сейчас мы наблюдаем среднее давление у марсианской поверхности всего лишь в 6 мбар — куда же делось оставшееся? Главной причиной потерь марсианской атмосферы до последнего времени считалось исчезновение у него магнитного поля, которое тем самым перестало препятствовать «сдуванию» атмосферы под действием солнечного ветра.

Но как показали дальнейшие исследования, отсутствие магнитного поля наоборот замедляет скорость её улетучивания: измеренные спутником MAVEN за первые 2 года своей работы потери атмосферы составили в среднем 2193 тонны за год. Даже если учесть, что эти измерения производились на спаде активности Солнца, и среднее значение будет в несколько раз выше, этого всё равно оказывается недостаточно: прежние оценки учёных, основанные на уровне потерь в 568 тонн за год в солнечный минимум в современное время, давали общую потерю углекислого газа из атмосферы в размере 0,8–43 мбар за предыдущие 3,5 миллиарда лет. То есть экстраполируя их оценки на полученные MAVEN данные (оказавшиеся в 3,86 раза выше) мы получаем утечку в 31–166 мбар за этот период, против минимально недостающих 500 мбар.

Изменение атмосферного давления за марсианский год. Разница в показаниях объясняется тем что Викинг–2 располагался на 900 метров ниже среднего уровня марсианской поверхности чем его собрат Викинг–1.

Какие есть ещё подозреваемые? Посадочные платформы «Викингов» обнаружили то, что марсианский грунт содержит значительную долю монтмориллонитовых глин, которые могут адсорбировать значительную массу углекислого газа из атмосферы. Так что кроме 4–5 мбар кочующих от полюса к полюсу в полярных шапках (по более новым данным там может находиться до 85 мбар) и 6 мбар находящихся в атмосфере, предполагается что ещё порядка 300 мбар углекислого газа из атмосферы было поглощено почвой и ещё 130 мбар превратились в ней в карбонаты. Оценки общих текущих запасов углекислого газа на Марсе у различных учёных варьируются в довольно широких пределах: от ≤200 до ≥450 мбар. Но раньше они и вовсе колебались в интервале 200–10000 мбар.

Причиной такого разброса было наше плохое знание внутреннего устройства «Красной планеты». Да и сейчас, хоть мы и неплохо изучили полярные шапки Марса, а также приповерхностные слои Марса на всей его площади до глубины в пару метров, наши знания его внутреннего устройства оставляют желать лучшего, отчего разброс оценок всё ещё остаётся большим. Приоткрыть завесу над этим вопросом должна посадочная платформа «InSight», которая приземлилась на Марс 26 ноября. На борту InSight находятся чувствительный сейсмометр и складной 5–метровый бур (химического анализа грунта производить в данном случае не собираются, но и измерение физических свойств почвы на таких глубинах станет для нас большим шагом вперёд).

«Как это всё влияет на марсианский климат?» — вы можете спросить. Дело тут заключается в том, что от эксцентриситета зависит то как близко подходит планета к Солнцу и сколько времени за оборот она проводит в этом положении. Таким образом эксцентриситет влияет на климат планеты в целом, а наклон оси влияет на его широтное распределение: при достижении наклона оси вращения планеты значения в 54° полюса планеты начинают получать такое же количество солнечного света, как и экватор. А при дальнейшем увеличении наклона — даже больше него. Таким образом климат на полюсах становится теплее чем на экваторе, что ведёт в свою очередь к таянию верхнего слоя полярных шапок, состоящих из «сухого льда» (замёрзшего углекислого газа). А так как углекислый газ является парниковым газом, то его выделение вызывает потепление на всей планете в целом.

График годичных пиков температур в областях полярных шапок согласно исследованию 2012 года. Самые высокие температуры выделены чёрным цветом, а средние — красным и жёлтым, а низкие — белым (при этом ромбом указано текущее состояние Марса). Синим прямоугольником указан интервал изменения параметров эксцентриситета и наклона у Земли.

По всей совокупности факторов оптимальными параметрами для разогрева Марса являются среднее значение эксцентриситета (0,06–0,08) и совпадение перигелия орбиты с днём равноденствия (0° или 360°), но в целом эти параметры на климат имеют значительно меньшее влияние. Текущими значениями для Марса являются 25,19° наклона оси, эксцентриситет в 0,0934 и перигелий 286,502°. Эксцентриситет орбиты Марса сейчас движется к своему пику в 0,105 (который должен достичь спустя 24 тысячи лет), после чего он двинется обратно к показателю 0,002 (который достигнет спустя 100 тысяч лет). К сожалению наклон Марса сейчас находится в своей спокойной фазе, вблизи минимума цикла в 2 миллиона лет, и в ближайшее время не планирует подниматься выше 36°. Так что Марс в обозримом будущем для нас так и должен остаться бескрайней пустыней.

Песчаный вихрь заснятый марсоходом «Спирит» 15 мая 2005 года. Gif отображает процесс движения вихря за 9,5 минут (интервал между кадрами составляет около полуминуты).

Однако это не означает что климат Марса не будет меняться в ближайшее время. Точнее сказать он меняется прямо сейчас: за период с получения последних сведений от «Викингов» в 1977 году и до момента получения первых данных с зонда «Марс Глобал Сервейор» в 1999 году, температура марсианской поверхности поднялась на 0,86°C. Этот процесс не связан напрямую с описанными выше явлениями — объяснение ему учёные нашли в изменении альбедо Марса (степени отражающей способности его поверхности) которое как оказалось за эти 22 года изменилось больше чем на 10% в большую или меньшую сторону на трети марсианской поверхности.

Это изменение не предвещает пока сделать терраформинг Марса значительно проще, так как по предварительным оценкам учёных для него требуется поднять температуру на поверхности на целых 25°C — иначе после снятия внешнего воздействия Марс вернётся в своё изначальное холодное состояние. Само изменение альбедо Марса по всей видимости связано с пылевыми бурями, и как видно на снимках, южная полярная шапка (формирующаяся в тот период года, когда на Марсе происходит глобальная пылевая буря) становится более «грязной» чем северная.

Сейчас эти данные строятся всего на двух временных точках и говорить о каких–то закономерностях пока рано. Однако исследования циклов изменения эксцентриситета и наклона также говорят о том, что глобальное потепление происходит на Марсе уже прямо сейчас, но происходит со значительно меньшей скоростью:

Синяя линия — температура при которой начинается таяние вечной мерзлоты в кратере Гейла, располагающегося в 5° к югу от экватора (получено по данным Кьюриосити).

Что же может дать нам этот небольшой пик на графике, к которому мы сейчас движемся? Если говорить в целом, то довольно немного. При повышении средней температуры на Марсе там тоже должно происходить глобальное потепление, как и на Земле: при давлении атмосферы в 6,1 мбар и температуре в 158°K в марсианской почве может адсорбироваться до 11 см³ углекислого газа на 1 грамм грунта, но при температуре в 196°K насыщение происходит уже при 3,5 см³ на грамм. Таким образом нагрев почвы вызовет выделение накопленного в ней парникового газа. Однако в целом от этого небольшого повышения средней температуры и сам эффект будет незначительным. К тому же из–за ограниченной теплопроводности почвы её прогрев происходит не мгновенно, а со скоростью около 1 метра за год, так что эти узкие пики не успевают прогреть Марс на значительную глубину и вызвать выделение значительных объёмов углекислого газа.

Взвесь пыли в марсианской атмосфере делает его небо противоположным земному.

Кроме выделения газов из почвы возможен ещё один эффект, усиливающий потепление: при значительном росте давления атмосферы знаменитые глобальные пылевые бури Марса по оценкам учёных должны сойти на нет. Это также должно повысить среднюю температуру на планете, так как эти бури могут накрывать всю планету на срок от нескольких земных месяцев до полугода, отражая часть света обратно в космос. Но возможно ещё более последствием этого может быть то, что согласно другому недавнему исследованию эти бури являются источником перхлоратов на Марсе, которые в больших концентрациях являющихся ядовитыми для людей и большинства форм жизни на Земле (включая растения). Таким образом потепление климата на «Красной планете» может напрямую послужить и в повышении плодородности её почвы. Однако этот эффект требует заметно большего потепления, чем будет достигнут в текущем цикле повышения температуры, так что об этом скорее стоит поговорить в контексте терраформинга Марса, о котором будет идти речь в очередной статье.

В завершении статьи я хотел бы предложить всем интересующимся исследованием, колонизацией и терраформингом Марса подписаться на группу Марсианского общества в Facebook и ВКонтакте, а также вступить в наши ряды или стать координаторами Марсианского общества в регионах, чтобы внести свой посильный вклад в процесс превращения «Красной планеты» в сине–зелёную. Для этого можно обратиться ко мне или Алексею.

Инфографика о климате в кратере Гейла

Написал PerAsperaAdMars на cosmos.d3.ru / комментировать




Next Page: 10000

Site Map 2018_01_14
Site Map 2018_01_15
Site Map 2018_01_16
Site Map 2018_01_17
Site Map 2018_01_18
Site Map 2018_01_19
Site Map 2018_01_20
Site Map 2018_01_21
Site Map 2018_01_22
Site Map 2018_01_23
Site Map 2018_01_24
Site Map 2018_01_25
Site Map 2018_01_26
Site Map 2018_01_27
Site Map 2018_01_28
Site Map 2018_01_29
Site Map 2018_01_30
Site Map 2018_01_31
Site Map 2018_02_01
Site Map 2018_02_02
Site Map 2018_02_03
Site Map 2018_02_04
Site Map 2018_02_05
Site Map 2018_02_06
Site Map 2018_02_07
Site Map 2018_02_08
Site Map 2018_02_09
Site Map 2018_02_10
Site Map 2018_02_11
Site Map 2018_02_12
Site Map 2018_02_13
Site Map 2018_02_14
Site Map 2018_02_15
Site Map 2018_02_15
Site Map 2018_02_16
Site Map 2018_02_17
Site Map 2018_02_18
Site Map 2018_02_19
Site Map 2018_02_20
Site Map 2018_02_21
Site Map 2018_02_22
Site Map 2018_02_23
Site Map 2018_02_24
Site Map 2018_02_25
Site Map 2018_02_26
Site Map 2018_02_27
Site Map 2018_02_28
Site Map 2018_03_01
Site Map 2018_03_02
Site Map 2018_03_03
Site Map 2018_03_04
Site Map 2018_03_05
Site Map 2018_03_06
Site Map 2018_03_07
Site Map 2018_03_08
Site Map 2018_03_09
Site Map 2018_03_10
Site Map 2018_03_11
Site Map 2018_03_12
Site Map 2018_03_13
Site Map 2018_03_14
Site Map 2018_03_15
Site Map 2018_03_16
Site Map 2018_03_17
Site Map 2018_03_18
Site Map 2018_03_19
Site Map 2018_03_20
Site Map 2018_03_21
Site Map 2018_03_22
Site Map 2018_03_23
Site Map 2018_03_24
Site Map 2018_03_25
Site Map 2018_03_26
Site Map 2018_03_27
Site Map 2018_03_28
Site Map 2018_03_29
Site Map 2018_03_30
Site Map 2018_03_31
Site Map 2018_04_01
Site Map 2018_04_02
Site Map 2018_04_03
Site Map 2018_04_04
Site Map 2018_04_05
Site Map 2018_04_06
Site Map 2018_04_07
Site Map 2018_04_08
Site Map 2018_04_09
Site Map 2018_04_10
Site Map 2018_04_11
Site Map 2018_04_12
Site Map 2018_04_13
Site Map 2018_04_14
Site Map 2018_04_15
Site Map 2018_04_16
Site Map 2018_04_17
Site Map 2018_04_18
Site Map 2018_04_19
Site Map 2018_04_20
Site Map 2018_04_21
Site Map 2018_04_22
Site Map 2018_04_23
Site Map 2018_04_24
Site Map 2018_04_25
Site Map 2018_04_26
Site Map 2018_04_27
Site Map 2018_04_28
Site Map 2018_04_29
Site Map 2018_04_30
Site Map 2018_05_01
Site Map 2018_05_02
Site Map 2018_05_03
Site Map 2018_05_04
Site Map 2018_05_05
Site Map 2018_05_06
Site Map 2018_05_07
Site Map 2018_05_08
Site Map 2018_05_09
Site Map 2018_05_15
Site Map 2018_05_16
Site Map 2018_05_17
Site Map 2018_05_18
Site Map 2018_05_19
Site Map 2018_05_20
Site Map 2018_05_21
Site Map 2018_05_22
Site Map 2018_05_23
Site Map 2018_05_24
Site Map 2018_05_25
Site Map 2018_05_26
Site Map 2018_05_27
Site Map 2018_05_28
Site Map 2018_05_29
Site Map 2018_05_30
Site Map 2018_05_31
Site Map 2018_06_01
Site Map 2018_06_02
Site Map 2018_06_03
Site Map 2018_06_04
Site Map 2018_06_05
Site Map 2018_06_06
Site Map 2018_06_07
Site Map 2018_06_08
Site Map 2018_06_09
Site Map 2018_06_10
Site Map 2018_06_11
Site Map 2018_06_12
Site Map 2018_06_13
Site Map 2018_06_14
Site Map 2018_06_15
Site Map 2018_06_16
Site Map 2018_06_17
Site Map 2018_06_18
Site Map 2018_06_19
Site Map 2018_06_20
Site Map 2018_06_21
Site Map 2018_06_22
Site Map 2018_06_23
Site Map 2018_06_24
Site Map 2018_06_25
Site Map 2018_06_26
Site Map 2018_06_27
Site Map 2018_06_28
Site Map 2018_06_29
Site Map 2018_06_30
Site Map 2018_07_01
Site Map 2018_07_02
Site Map 2018_07_03
Site Map 2018_07_04
Site Map 2018_07_05
Site Map 2018_07_06
Site Map 2018_07_07
Site Map 2018_07_08
Site Map 2018_07_09
Site Map 2018_07_10
Site Map 2018_07_11
Site Map 2018_07_12
Site Map 2018_07_13
Site Map 2018_07_14
Site Map 2018_07_15
Site Map 2018_07_16
Site Map 2018_07_17
Site Map 2018_07_18
Site Map 2018_07_19
Site Map 2018_07_20
Site Map 2018_07_21
Site Map 2018_07_22
Site Map 2018_07_23
Site Map 2018_07_24
Site Map 2018_07_25
Site Map 2018_07_26
Site Map 2018_07_27
Site Map 2018_07_28
Site Map 2018_07_29
Site Map 2018_07_30
Site Map 2018_07_31
Site Map 2018_08_01
Site Map 2018_08_02
Site Map 2018_08_03
Site Map 2018_08_04
Site Map 2018_08_05
Site Map 2018_08_06
Site Map 2018_08_07
Site Map 2018_08_08
Site Map 2018_08_09
Site Map 2018_08_10
Site Map 2018_08_11
Site Map 2018_08_12
Site Map 2018_08_13
Site Map 2018_08_15
Site Map 2018_08_16
Site Map 2018_08_17
Site Map 2018_08_18
Site Map 2018_08_19
Site Map 2018_08_20
Site Map 2018_08_21
Site Map 2018_08_22
Site Map 2018_08_23
Site Map 2018_08_24
Site Map 2018_08_25
Site Map 2018_08_26
Site Map 2018_08_27
Site Map 2018_08_28
Site Map 2018_08_29
Site Map 2018_08_30
Site Map 2018_08_31
Site Map 2018_09_01
Site Map 2018_09_02
Site Map 2018_09_03
Site Map 2018_09_04
Site Map 2018_09_05
Site Map 2018_09_06
Site Map 2018_09_07
Site Map 2018_09_08
Site Map 2018_09_09
Site Map 2018_09_10
Site Map 2018_09_11
Site Map 2018_09_12
Site Map 2018_09_13
Site Map 2018_09_14
Site Map 2018_09_15
Site Map 2018_09_16
Site Map 2018_09_17
Site Map 2018_09_18
Site Map 2018_09_19
Site Map 2018_09_20
Site Map 2018_09_21
Site Map 2018_09_23
Site Map 2018_09_24
Site Map 2018_09_25
Site Map 2018_09_26
Site Map 2018_09_27
Site Map 2018_09_28
Site Map 2018_09_29
Site Map 2018_09_30
Site Map 2018_10_01
Site Map 2018_10_02
Site Map 2018_10_03
Site Map 2018_10_04
Site Map 2018_10_05
Site Map 2018_10_06
Site Map 2018_10_07
Site Map 2018_10_08
Site Map 2018_10_09
Site Map 2018_10_10
Site Map 2018_10_11
Site Map 2018_10_12
Site Map 2018_10_13
Site Map 2018_10_14
Site Map 2018_10_15
Site Map 2018_10_16
Site Map 2018_10_17
Site Map 2018_10_18
Site Map 2018_10_19
Site Map 2018_10_20
Site Map 2018_10_21
Site Map 2018_10_22
Site Map 2018_10_23
Site Map 2018_10_24
Site Map 2018_10_25
Site Map 2018_10_26
Site Map 2018_10_27
Site Map 2018_10_28
Site Map 2018_10_29
Site Map 2018_10_30
Site Map 2018_10_31
Site Map 2018_11_01
Site Map 2018_11_02
Site Map 2018_11_03
Site Map 2018_11_04
Site Map 2018_11_05
Site Map 2018_11_06
Site Map 2018_11_07
Site Map 2018_11_08
Site Map 2018_11_09
Site Map 2018_11_10
Site Map 2018_11_11
Site Map 2018_11_12
Site Map 2018_11_13
Site Map 2018_11_14
Site Map 2018_11_15
Site Map 2018_11_16
Site Map 2018_11_17
Site Map 2018_11_18
Site Map 2018_11_19
Site Map 2018_11_20
Site Map 2018_11_21
Site Map 2018_11_22
Site Map 2018_11_23
Site Map 2018_11_24
Site Map 2018_11_25
Site Map 2018_11_26
Site Map 2018_11_27
Site Map 2018_11_28
Site Map 2018_11_29
Site Map 2018_11_30
Site Map 2018_12_01
Site Map 2018_12_02
Site Map 2018_12_03
Site Map 2018_12_04
Site Map 2018_12_05